免费欧美高清码二三区,中文字幕亚洲无线码一区女同,性感丰满少妇一区二区,超碰97在线人人在线

歡迎來(lái)到吉林省華博科技工業(yè)有限公司網(wǎng)站!
咨詢熱線

13009129951

當(dāng)前位置:首頁(yè)  >  技術(shù)文章  >  電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

電壓擊穿試驗(yàn)儀美標(biāo)標(biāo)準(zhǔn)ASTM D149

更新時(shí)間:2009-03-19  |  點(diǎn)擊率:8715

Designation: D 149 – 97a (Reapproved 2004)
Standard Test Method for
Dielectric Breakdown Voltage and Dielectric Strength of
Solid Electrical Insulating Materials at Commercial Power
1
Frequencies
This standard is issued under the fixed designation D 149; the number immediay following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the Department of Defense.
1. Scope over). With the addition of instructions modifying Section 12,
this test method may be used for proof testing.
1.1 This test method covers procedures for the determina-
1.8 ThistestmethodissimilartoIECPublication243-1.All
tion of dielectric strength of solid insulating materials at
2,3 procedures in this method are included in IEC 243-1. Differ-
commercial power frequencies, under specified conditions.
ences between this methodand IEC 243-1 are largely editorial.
1.2 Unless otherwise specified, the tests shall be made at 60
1.9 This standard does not purport to address all of the
Hz. However, this test method may be used at any frequency
safety concerns, if any, associated with its use. It is the
from 25 to 800 Hz. At frequencies above 800 Hz, dielectric
responsibility of the user of this standard to establish appro-
heating may be a problem.
priate safety and health practices and determine the applica-
1.3 This test method is intended to be used in conjunction
bility of regulatory limitations prior to use. Specific hazard
with anyASTM standard or other document that refers to this
statements are given in Section 7. Also see 6.4.1.
test method. References to this document should specify the
particular options to be used (see 5.5).
2. Referenced Documents
1.4 It may be used at various temperatures, and in any
4
2.1 ASTM Standards:
suitable gaseous or liquid surrounding medium.
D 374 Test Methods for Thickness of Solid Electrical Insu-
1.5 This test method is not intended for measuring the
lation
dielectric strength of materials that are fluid under the condi-
D 618 Practice for Conditioning Plastics for Testing
tions of test.
D 877 Test Method for Dielectric Breakdown Voltage of
1.6 This test method is not intended for use in determining
Insulating Liquids Using Disk Electrodes
intrinsic dielectric strength, direct-voltage dielectric strength,
D 1711 Terminology Relating to Electrical Insulation
or thermal failure under electrical stress (see Test Method
D 2413 Practice for Preparation of Insulating Paper and
D3151).
Board Impregnated with a Liquid Dielectric
1.7 This test method is most commonly used to determine
D 3151 Test Method forThermal Failure of Solid Electrical
thedielectricbreakdownvoltagethroughthethicknessofatest
Insulating Materials Under Electric Stress
specimen (puncture). It may also be used to determine dielec-
D 3487 Specification for Mineral Insulating Oil Used in
tric breakdown voltage along the interface between a solid
Electrical Apparatus
specimen and a gaseous or liquid surrounding medium (flash-
D 5423 Specification for Forced-Convection Laboratory
Ovens for Electrical Insulation
1
This test method is under the jurisdiction of ASTM Committee D09 on 2.2 IEC Standard:
Electrical and Electronic Insulating Materials and is the direct responsibility of
Pub. 243-1 Methods of Test for Electrical Strength of Solid
Subcommittee D09.12 on Electrical Tests. 5
Insulating Materials—Part 1: Tests at Power Frequencies
Current edition approved March 1, 2004. Published March 2004. Originally
approved in 1922. Last previous edition approved in 1997 as D 149–97a.
2
Bartnikas, R., Chapter 3, “High Voltage Measurements,” Electrical Properties
4
of Solid Insulating Materials, Measurement Techniques, Vol. IIB, Engineering For referenced ASTM standards, visit the ASTM website, www.astm.org, or
Dielectrics, R. Bartnikas, Editor, ASTM STP 926, ASTM, Philadelphia, 1987. contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
3
Nelson, J. K., Chapter 5, “Dielectric Breakdown of Solids,” Electrical Standards volume information, refer to the standard’s Document Summary page on
Properties of Solid Insulating Materials: Molecular Structure and Electrical the ASTM website.
5
Behavior, Vol. IIA, Engineering Dielectrics, R. Bartnikas and R. M. Eichorn, Available from the International Electrotechnical Commission, Geneva, Swit-
Editors, ASTM STP 783, ASTM, Philadelphia, 1983. zerland.
Copyright (C) ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

D 149 – 97a (2004)
2.3 ANSI Standard: environmentalsituations.Thistestmethodisusefulforprocess
C68.1 Techniques for Dielectric Tests, IEEE Standard No. control, acceptance or research testing.
6
4 5.3 Resultsobtainedbythistestmethodcanseldombeused
directly to determine the dielectric behavior of a material in an
3. Terminology actual application. In most cases it is necessary that these
results be evaluated by comparison with results obtained from
3.1 Definitions:
other functional tests or from tests on other materials, or both,
3.1.1 dielectric breakdown voltage (electric breakdown
in order to estimate their significance for a particular material.
voltage), n—the potential difference at which dielectric failure
5.4 Three methods for voltage application are specified in
occurs under prescribed conditions in an electrical insulating
Section 12: Method A, Short-Time Test; Method B, Step-by-
material located between two electrodes. (See also Appendix
StepTest; and Method C, Slow Rate-of-RiseTest. MethodAis
X1.)
the most commonly-used test for quality-control tests. How-
3.1.1.1 Discussion—The term dielectric breakdown voltage
ever, the longer-time tests, Methods B and C, which usually
is sometimes shortened to “breakdown voltage.”
will give lower test results, may give more meaningful results
3.1.2 dielectric failure (under test), n—an event that is
whendifferentmaterialsarebeingcomparedwitheachother.If
evidencedbyanincreaseinconductanceinthedielectricunder
a test set with motor-driven voltage control is available, the
test limiting the electric field that can be sustained.
slow rate-of-rise test is simpler and preferable to the step-by-
3.1.3 dielectric strength, n—the voltage gradient at which
step test. The results obtained from Methods B and C are
dielectric failure of the insulating material occurs under spe-
comparable to each other.
cific conditions of test.
5.5 Documents specifying the use of this test method shall
3.1.4 electric strength, n—see dielectric strength.
also specify:
3.1.4.1 Discussion—Internationally, “electric strength” is
5.5.1 Method of voltage application,
used almost universally.
5.5.2 Voltage rate-of-rise, if slow rate-of-rise method is
3.1.5 flashover, n—a disruptive electrical discharge at the
specified,
surface of electrical insulation or in the surrounding medium,
5.5.3 Specimen selection, preparation, and conditioning,
which may or may not cause permanent damage to the
5.5.4 Surrounding medium and temperature during test,
insulation.
5.5.5 Electrodes,
3.1.6 For definitions of other terms relating to solid insulat-
5.5.6 Wherever possible, the failure criterion of the current-
ing materials, refer to Terminology D 1711.
sensing element, and
4. Summary of Test Method 5.5.7 Any desired deviations from the recommended proce-
dures as given.
4.1 Alternating voltage at a commercial power frequency
5.6 If any of the requirements listed in 5.5 are missing from
(60 Hz, unless otherwise specified) is applied to a test
the specifying document, then the recommendations for the
specimen. The voltage is increased from zero or from a level
several variables shall be followed.
well below the breakdown voltage, in one of three prescribed
5.7 Unless the items listed in 5.5 are specified, tests made
methods of voltage application, until dielectric failure of the
with such inadequate reference to this test method are not in
test specimen occurs.
conformancewiththistestmethod.Iftheitemslistedin5.re
4.2 Mostcommonly,thetestvoltageisappliedusingsimple
not closely controlled during the test, the precisions stated in
test electrodes on opposite faces of specimens. The specimens
15.2 and 15.3 may not be realized.
may be molded or cast, or cut from flat sheet or plate. Other
5.8 Variations in the failure criteria (current setting and
electrode and specimen configurations may be used to accom-
response time) of the current sensing element significantly
modate the geometry of the sample material, or to simulate a
affect the test results.
specific application for which the material is being evaluated.
5.9 Appendix X1. contains a more complete discussion of
the significance of dielectric strength tests.
5. Significance and Use
5.1 The dielectric strength of an electrical insulating mate- 6. Apparatus
rial is a property of interest for any application where an
6.1 Voltage Source—Obtain the test voltage from a step-up
electrical field will be present. In many cases the dielectric
transformer supplied from a variable sinusoidal low-voltage
strength of a material will be the determining factor in the
source. The transformer, its voltage source, and the associated
design of the apparatus in which it is to be used.
controls shall have the following capabilities:
5.2 Tests made as specified herein may be used to provide
6.1.1 The ratio of crest to root-mean-square (rms) test
part of the information needed for determining suitability of a
voltage shall be equal to =2 6 5% (1.34 to 1.48), with the
materialforagivenapplication;andalso,fordetectingchanges
test specimen in the circuit, at all voltages greater than 50 % of
or deviations from normal characteristics resulting from pro-
the breakdown voltage.
cessing variables, aging conditions, or other manufacturing or
6.1.2 The capacity of the source shall be sufficient to
maintainthetestvoltageuntildielectricbreakdownoccurs.For
most materials, using electrodes similar to those shown in
6 Table 1, an output current capacity of 40 mA is usually
Available fromAmerican National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036. satisfactory. For more complex electrode structures, or for

D 149 – 97a (2004)
A
TABLE 1 Typical Electrodes for Dielectric Strength Testing of Various Types of Insulating Materials
Electrode
B,C
Description of Electrodes Insulating Materials
Type
1 Opposing cylinders 51 mm (2 in.) in diameter, 25 mm (1 in.) thick with flat sheets of paper, films, fabrics, rubber, molded plastics, laminates,
edges rounded to 6.4 mm (0.25 in.) radius boards, glass, mica, and ceramic
2 Opposing cylinders 25 mm (1 in.) in diameter, 25 mm (1 in.) thick with same as for Type 1, particularly for glass, mica, plastic, and ceramic
edges rounded to 3.2 mm (0.125 in.) radius
3 Opposing cylindrical rods 6.4 mm (0.25 in.) in diameter with edges same as for Type 1, particularly for varnish, plastic, and other thin film and
D
rounded to 0.8 mm (0.0313 in.) radius tapes: where small specimens necessitate the use of smaller electrodes,
or where testing of a small area is desired
4 Flat plates 6.4 mm (0.25 in.) wide and 108 mm (4.25 in.) long with edges same as for Type 1, particularly for rubber tapes and other narrow widths
square and ends rounded to 3.2 mm (0.125 in.) radius of thin materials
E
5 Hemispherical electrodes 12.7 mm (0.5 in.) in diameter filling and treating compounds, gels and semisolid compounds and greases,
embedding, potting, and encapsulating materials
6 Opposing cylinders; the lower one 75 mm (3 in.) in diameter, 15 mm same as for Types 1 and 2
(0.60 in.) thick; the upper one 25 mm (1 in.) in diameter, 25 mm
F
thick; with edges of both rounded to 3 mm (0.12 in.) radius
G
7 Opposing circular flat plates, 150 mm diameter , 10 mm thick with flat sheet, plate, or board materials, for tests with the voltage gradient
H
edges rounded to 3 to 5 mm radius parallel to the surface
A
TheseelectrodesarethosemostcommonlyspecifiedorreferencedinASTMstandards.WiththeexceptionofType5electrodes,noattempthasbeenmadetosuggest
electrode systems for other than flat surface material. Other electrodes may be used as specified in ASTM standards or as agreed upon between seller and purchaser
where none of these electrodes in the table is suitable for proper evaluation of the material being tested.
B
Electrodes are normally made from either brass or stainless steel. Reference should be made to the standard governing the material to be tested to determine which,
if either, material is preferable.
C
The electrodes surfaces should be polished and free from irregularities resulting from previous testing.
D
Refer to the appropriate standard for the load force applied by the upper electrode assembly. Unless otherwise specified the upper electrodes shall be 50 6 2g.
E
Refer to the appropriate standard for the proper gap settings.
F
The Type 6 electrodes are those given in IEC Publication 243-1 for testing of flat sheet materials. They are less critical as to concentricity of the electrodes than are
the Types 1 and 2 electrodes.
G
Other diameters may be used, provided that all parts of the test specimen are at least 15 mm inside the edges of the electrodes.
H G
The Type 7 electrodes, as described in the table and in Note , are those given in IEC Publication 243-1 for making tests parallel to the surface.
testing high-loss materials, higher current capacity may be one current setting. The electrode area may have a significant
needed.Thepowerratingformosttestswillvaryfrom0.5kVA effect upon what the current setting should be.
for testing low-capacitance specimens at voltages up to 10 kV, 6.1.7 The specimen current-sensing element may be in the
to 5 kVA for voltages up to 100 kV. primary of the step-up transformer. Calibrate the current-
6.1.3 The controls on the variable low-voltage source shall sensing dial in terms of specimen current.
be capable of varying the supply voltage and the resultant test 6.1.8 Exercise care in setting the response of the current
voltage smoothly, uniformly, and without overshoots or tran- control. If the control is set too high, the circuit will not
sients, in accordance with 12.2. Do not allow the peak voltage respondwhenbreakdownoccurs;ifsettoolow,itmayrespond
to exceed 1.48 times the indicated rms test voltage under any to leakage currents, capacitive currents, or partial discharge
circumstance. Motor-driven controls are preferable for making (corona)currentsor,whenthesensingelementislocatedinthe
short-time (see 12.2.1) or slow-rate-of-rise (see 12.2.3) tests. primary, to the step-up transformer magnetizing current.
6.1.4 Equip the voltage source with a circuit-breaking 6.2 Voltage Measurement—A voltmeter must be provided
device that will operate within three cycles. The device shall for measuring the rms test voltage. A peak-reading voltmeter
disconnect the voltage-source equipment from the power may be used, in which case divide the reading by =2toget
service and protect it from overload as a result of specimen rms values. The overall error of the voltage-measuring circuit
breakdown causing an overload of the testing apparatus. If shall not exceed 5 % of the measured value. In addition, the
prolonged current follows breakdown it will result in unnec- response time of the voltmeter shall be such that its time lag
essary burning of the test specimens, pitting of the electrodes, will not be greater than 1% of full scale at any rate-of-rise
and contamination of any liquid surrounding medium. used.
6.1.5 The circuit-breaking device should have an adjustable 6.2.1 Measure the voltage using a voltmeter or potential
current-sensing element in the step-up transformer secondary, transformer connected to the specimen electrodes, or to a
to allow for adjustment consistent with the specimen charac- separate voltmeter winding, on the test transformer, that is
teristics and arranged to sense specimen current. Set the unaffected by the step-up transformer loading.
sensing element to respond to a current that is indicative of 6.2.2 It is desirable for the reading of the maximum applied
specimen breakdown as defined in 12.3. test voltage to be retained on the voltmeter after breakdown so
6.1.6 The current setting can have a significant effect on the that the breakdown voltage can be accuray read and re-
test results. Make the setting high enough that transients, such corded.
as partial discharges, will not trip the breaker but not so high 6.3 Electrodes—For a given specimen configuration, the
thatexcessiveburningofthespecimen,withresultanectrode dielectric breakdown voltage may vary considerably, depend-
damage, will occur on breakdown. The optimum current inguponthegeometryandplacementofthetesectrodes.For
setting is not the same for all specimens and depending upon this reason it is important that the electrodes to be used be
the intended use of the material and the purpose of the test, it described when specifying this test method, and that they be
may be desirable to make tests on a given sample at more than described in the report.

D 149 – 97a (2004)
6.3.1 One of the electrodes listed in Table 1 should be the test values. Testing in air may require excessively large
specified by the document referring to this test method. If no specimens or cause heavy surface discharges and burning
electrodes have been specified, select an applicable one from before breakdown. Some electrode systems for testing in air
Table 1, or use other electrodes mutually acceptable to the make use of pressure gaskets around the electrodes to prevent
parties concerned when the standard electrodes cannot be used flashover. The material of the gaskets or seals around the
due to the nature or configuration of the material being tested. electrodes may influence the breakdown values.
See references in Appendix X2 for examples of some special 6.4.1 When tests are made in insulating oil, an oil bath of
electrodes.Inanyeventtheelectrodesmustbedescribedinthe adequate size shall be provided. (Caution—The use of glass
report. containers is not recommended for tests at voltages above
6.3.2 The electrodes of Types 1 through 4 and Type 6 of about10kV,becausetheenergyreleasedatbreakdownmaybe
Table 1 should be in contact with the test specimen over the sufficient to shatter the container. Metal baths must be
entire flat area of the electrodes. grounded.)
6.3.3 The specimens tested using Type 7 electrodes should It is recommended that mineral oil meeting the requirements
be of such size that all portions of the specimen will be within of Specification D 3487, Type I or II, be used. It should have a
andnolessthan15mmfromtheedgesoftheelectrodesduring dielectric breakdown voltage as determined by Test Method
test. In most cases, tests usingType 7 electrodes are made with D 877 of at least 26 kV. Other dielectric fluids may be used as
the plane of the electrode surfaces in a vertical position. Tests surrounding mediums if specified. These include, but are not
made with horizontal electrodes should not be directly com- limited to, silicone fluids and other liquids intended for use in
pared with tests made with vertical electrodes, particularly transformers, circuit breakers, capacitors, or cables.
when the tests are made in a liquid surrounding medium.
6.4.1.1 The quality of the insulating oil may have an
6.3.4 Keep the electrode surfaces clean and smooth, and appreciable effect upon the test results. In addition to the
freefromprojectingirregularitiesresultingfromprevioustests. dielectric breakdown voltage, mentioned above, particulate
If asperities have developed, they must be removed. contaminants are especially important when very thin speci-
6.3.5 It is important that the original manufacture and mens (25 μm (1 mil) or less) are being tested. Depending upon
subsequent resurfacing of electrodes be done in such a manner the nature of the oil and the properties of the material being
that the specified shape and finish of the electrodes and their tested, other properties, including dissolved gas content, water
edges are maintained. The flatness and surface finish of the content, and dissipation factor of the oil may also have an
electrode faces must be such that the faces are in close contact effect upon the results. Frequent replacement of the oil, or the
with the test specimen over the entire area of the electrodes. use of filters and other reconditioning equipment may be
Surface finish is particularly important when testing very thin necessary to minimize the effect of variations of the quality of
materials which are subject to physical damage from improp- the oil on the test results.
erly finished electrodes. When resurfacing, do not change the 6.4.1.2 Breakdown values obtained using liquids having
transition between the electrode face and any specified edge different electrical properties may not be comparable. (See
radius. X1.4.7.)Iftestsaretobemadeatotherthanroomtemperature,
6.3.6 Whenever the electrodes are dissimilar in size or the bath must be provided with a means for heating or cooling
shape, the one at which the lowest concentration of stress the liquid, and with a means to ensure uniform temperature.
exists, usually the larger in size and with the largest radius, Small baths can in some cases be placed in an oven (see 6.4.2)
should be at ground potential. in order to provide temperature control. If forced circulation of
6.3.7 In some special cases liquid metal electrodes, foil the fluid is provided, care must be taken to prevent bubbles
electrodes, metal shot, water, or conductive coating electrodes from being whipped into the fluid. The temperature shall be
are used. It must be recognized that these may give results maintainedwithin65°Cofthespecifiedtesttemperatureatthe
differing widely from those obtained with other types of electrodes, unless otherwise specified. In many cases it is
electrodes. specified that specimens to be tested in insulating oil are to be
6.3.8 Because of the effect of the electrodes on the test previously impregnated with the oil and not removed from the
results, it is frequently possible to obtain additional informa- oilbeforetesting(seePracticeD2413).Forsuchmaterials,the
tion as to the dielectric properties of a material (or a group of bath must be of such design that it will not be necessary to
materials) by running tests with more than one type of expose the specimens to air before testing.
electrode. This technique is of particular value for research 6.4.2 If tests in air are to be made at other than ambient
testing. temperature or humidity, an oven or controlled humidity
6.4 Surrounding Medium—The document calling for this chamber must be provided for the tests. Ovens meeting the
test method should specify the surrounding medium and the requirementsofSpecificationD 5423andprovidedwithmeans
test temperature. Since flashover must be avoided and the for introducing the test voltage will be suitable for use when
effects of partial discharges prior to breakdown mimimized, only temperature is to be controlled.
even for short time tests, it is often preferable and sometimes 6.4.3 Testsingassesotherthanairwillgenerallyrequirethe
necessary to make the tests in insulating liquid (see 6.4.1). use of chambers that can be evacuated and filled with the test
Breakdown values obtained in insulating liquid may not be gas, usually under some controlled pressure. The design of
comparable with those obtained in air. The nature of the such chambers will be determined by the nature of the test
insulating liquid and the degree of previous use may influence program to be undertaken.

D 149 – 97a (2004)
6.5 Test Chamber—The test chamber or area in which the 8.2 Sampling procedures for quality control purposes
tests are to be made shall be of sufficient size to hold the test should provide for gathering of sufficient samples to estimate
equipment, and shall be provided with interlocks to prevent both the average quality and the variability of the lot being
accidental contact with any electrically energized parts. A examined; and for proper protection of the samples from the
number of different physical arrangements of voltage source, time they are taken until the preparation of the test specimens
measuring equipment, baths or ovens, and electrodes are in the laboratory or other test area is begun.
possible, but it is essential that (1) all gates or doors providing 8.3 For the purposes of most tests it is desirable to take
access to spaces in which there are electrically energized parts samples from areas that are not immediay adjacent to
be interlocked to shut off the voltage source when opened; ( 2) obvious defects or discontinuities in the material. The outer
clearances are sufficiently large that the field in the area of the few layers of roll material, the top sheets of a package of
electrodes and specimen are not distorted and that flashovers sheets, or material immediay next to an edge of a sheet or
and partial discharges (corona) do not occur except between roll should be avoided, unless the presence or proximity of
the test electrodes; and (3) insertion and replacement of defects or discontinuities is of interest in the investigation of
specimens between tests be as simple and convenient as the material.
possible.Visualobservationoftheelectrodesandtestspecimen 8.4 The sample should be large enough to permit making as
during the test is frequently desirable. many individual tests as may be required for the particular
material (see 12.4).
7. Hazards
9. Test Specimens
7.1 Warning—Lethal voltages may be present during this
9.1 Preparation and Handling:
test. It is essential that the test apparatus, and all associated
9.1.1 Prepare specimens from samples collected in accor-
equipment that may be electrically connected to it, be properly
dance with Section 8.
designed and installed for safe operation. Solidly ground all
9.1.2 When flat-faced electrodes are to be used, the surfaces
electrically conductive parts that any person might come into
of the specimens which will be in contact with the electrodes
contact with during the test. Provide means for use at the
shall be smooth parallel planes, insofar as possible without
completion of any test to ground any parts which: were at high
actual surface machining.
voltage during the test; may have acquired an induced charge
9.1.3 The specimens shall be of sufficient size to prevent
duringthetest;mayretaina chargeeven after disconnection of
flashover under the conditions of test. For thin materials it may
the voltage source. Thoroughly instruct all operators in the
be convenient to use specimens large enough to permit making
proper way to conduct tests safely. When making high-voltage
more than one test on a single piece.
tests, particularly in compressed gas or in oil, the energy
9.1.4 For thicker materials (usually more than 2 mm thick)
released at breakdown may be sufficient to result in fire,
the breakdown strength may be high enough that flashover or
explosion, or rupture of the test chamber. Design test equip-
intense surface partial discharges (corona) may occur prior to
ment, test chambers, and test specimens so as to minimize the
breakdown. Techniques that may be used to prevent flashover,
possibility of such occurrences and to eliminate the possibility
or to reduce partial discharge (corona) include:
of personal injury.
9.1.4.1 Immerse the specimen in insulating oil during the
7.2 Warning—Ozone is a physiologically hazardous gas at
test. See X1.4.7 for the surrounding medium factors influenc-
elevated concentrations. The exposure limits are set by gov-
ingbreakdown.Thismaybenecessaryforspecimensthathave
ernmental agencies and are usually based upon recommenda-
not been dried and impregnated with oil, as well as for those
tions made by the American Conference of Governmental
7
whichhavebeenpreparedinaccordancewithPracticeD 2413,
Industrial Hygienists. Ozone is likely to be present whenever
for example. (See 6.4.)
voltagesexistwhicharesufficienttocausepartial,orcomplete,
9.1.4.2 Machinearecessordrillaflat-bottomholeinoneor
discharges in air or other atmospheres that contain oxygen.
both surfaces of the specimen to reduce the test thickness. If
Ozone has a distinctive odor which is initially discernible at
dissimilar electrodes are used (such as Type 6 of Table 1) and
low concentrations but sustained inhalation of ozone can cause
only one surface is to be machined, the larger of the two
temporary loss of sensitivity to the scent of ozone. Because of
electrodes should be in contact with the machined surface.
thisitisimportanttomeasuretheconcentrationofozoneinthe
Caremustbetakeninmachiningspecimensnottocontaminate
atmosphere, using commercially available monitoring devices,
or mechanically damage them.
whenever the odor of ozone is persistently present or when
9.1.4.3 Apply seals or shrouds around the electrodes, in
ozone generating conditions continue. Use appropriate means,
contact with the specimen to reduce the tendency to flashover.
such as exhaust vents, to reduce ozone concentrations to
9.1.5 Materials that are not in flat sheet form shall be tested
acceptable levels in working areas.
using specimens (and electrodes) appropriate to the material
8. Sampling and the geometry of the sample. It is essential that for these
materials both the specimen and the electrodes be defined in
8.1 The detailed sampling procedure for the material being
the specification for the material.
tested should be defined in the specification for that material.
9.1.6 Whatever the form of the material, if tests of other
than surface-to-surface puncture strength are to be made,
7 define the specimens and the electrodes in the specification for
Available from the American Conference of Governmental Industrial Hygien-
ists, Building No. D-7, 6500 Glenway Ave., Cincinnati, OH 45211. the material.

D 149 – 97a (2004)
9.2 In nearly all cases the actual thickness of the test
specimenisimportant.Unlessotherwisespecified,measurethe
thickness after the test in the immediate vicinity of the area of
breakdown. Measurements shall be made at room temperature
(25 6 5°C), using the appropriate procedure of Test Methods
D374.
10. Calibration
10.1 In making calibration measurements, take care that the
valuesofvoltageattheelectrodescanbedeterminedwithinthe
accuracy given in 6.2, with the test specimens in the circuit. Rates
(V/s) 6 20 %
10.2 Use an independently calibrated voltmeter attached to
100
the output of the test voltage source to verify the accuracy of 200
500
the measuring device. Electrostatic voltmeters, voltage divid-
1000
ers,orpotentialtransformershavingcomparableaccuracymay
2000
be used for calibration measurement. 5000
10.3 At voltages above about 12 kV rms (16.9 kV peak) a FIG. 1 Voltage Profile of the Short-Time Test
sphere gap may be used to calibrate the readings of the
voltage-measuring device. Follow procedures as specified in
ANSI C68.1 in such calibration.
occasionalaveragetimetobreakdownfallingoutsidetherange
of 10 to 20 s. In this case, the times to failures shall be made
11. Conditioning
a part of the report.
11.1 The dielectric strength of most solid insulating mate- 12.2.1.3 In running a series of tests comparing different
rials is influenced by temperature and moisture content. Mate- material, the same rate-of-rise shall be used with preference
rials so affected should be brought to equilibrium with an given to a rate that allows the average time to be between 10
atmosphere of controlled temperature and relative humidity and 20 s. If the time to breakdown cannot be adhered to, the
before testing. For such materials, the conditioning should be time shall be made a part of the report.
included in the standard referencing this test method. 12.2.2 Method B, Step-by-Step Test—Apply voltage to the
11.2 Unless otherwise specified, follow the procedures in test electrodes at the preferred starting voltage and in steps and
Practice D618. duration as shown in Fig. 2 until breakdown occurs.
12.2.2.1 From the list in Fig. 2, select the initial voltage, V ,
11.3 For many materials the moisture content has more s
to be the one closest to 50 % of the experimentally determined
effect on dielectric strength than does temperature. Condition-
or expected breakdown voltage under the short time test.
ing times for these materials should be sufficiently long to
12.2.2.2 If an initial voltage other than one of the preferred
permit the specimens to reach moisture equilibrium as well as
values listed in Fig. 2 is selected, it is recommended that the
temperature equilibrium.
voltage steps be 10% of the preferred initial voltage immedi-
11.4 If the conditioning atmosphere is such that condensa-
ay below the selected value.
tionoccursonthesurfaceofthespecimens,itmaybedesirable
12.2.2.3 Apply the initial voltage by increasing the voltage
to wipe the surfaces of the specimens immediay before
from zero as rapidly as can be accomplished without introduc-
testing. This will usually reduce the probability of surface
ing a peak voltage exceeding that permitted in 6.1.3. Similar
flashover.
requirements shall apply to the procedure used to increase the
voltagebetweensuccessivesteps.Aftertheinitialstep,thetime
12. Procedure
required to raise the voltage to the succeeding step shall be
12.1 (Caution—see Section 7 before commencement of
counted as part of the time at the succeeding step.
any test.)
12.2.2.4 If breakdown occurs while the voltage is being
12.2 Methods of Voltage Application:
increased to the next step, the specimen is described as having
12.2.1 Method A, Short-Time Test—Apply voltage uni- sustained a dielectric withstand voltage, V , equal to the
ws
formlytothetesectrodesfromzeroatoneoftheratesshown voltage of the step just ended. If breakdown occurs prior to the
inFig.1untilbreakdownoccurs.Usetheshort-timetestunless end of the holding period at any step, the dielectric withstand
otherwise specified. voltage,V ,forthespecimenistakenasthevoltageatthelast
ws
12.2.1.1 When establishing a rate initially in order for it to completedstep.Thevoltageatbreakdown,V ,istobeusedto
bd
beincludedinanewspecification,selectaratethat,foragiven calculate dielectric breakdown strength. The dielectric with-
set of specimens, will give an average time to breakdown of stand strength is to be calculated from the thickness and the
between 10 and 20 s. It may be necessary to run one or two dielectric withstand voltage, V . (See Fig. 2.)
ws
preliminary tests in order to determine the most suitable 12.2.2.5 It is desirable that breakdown occur in four to ten
rate-of-rise. For many materials a rate of 500 V/s is used. steps, but in not less than 120 s. If failure occurs at the third
12.2.1.2 If the document referencing this test method speci- steporless,orinlessthan120s,whicheverisgreater,onmore
fied a rate-of-rise, it shall be used consistently in spite of thanonespecimeninagroup,thetestsshouldberepeatedwith
6

D 149 – 97a (2004)
Rates (V/s) 6 20 % Constraints
1 tbd > 120 s
2
5
Preferred starting voltages, V are 0.25, 0.50, 1, 2, 5, 10, 20, 50, and 100 kV.
s
10 Vbd = > 1.5 Vs
Step Voltage 12.5
when Increment 20
A
Vs(kV) is (kV) 25
50
5 or less 10 % of Vs
100
over 5 to 10 0.50
over 10 to 25 1 FIG. 3 Voltage Profile of Slow Rate-of-Rise Test
over 25 to 50 2
over 50 to 100 5
over 100 10
greater than 2.5 times the initial value (and at a time of over
A
Vs = 0.5 ( Vbd for Short-Time Test) unless constraints cannot be met.
________________________________________________________________ 120 s), increase the initial voltage.
Constraints
12.3 Criteria of Breakdown—Dielectric failure or dielectric
(t 1 - t0)=(t2 - t1) = ... = (60 6 5)s
Alternate step times, (20 6 3)s and (300 6 10)s breakdown (as defined in Terminology D 1711) consists of an
120s # t # 720s, for 60s steps
bd increase in conductance, limiting the electric field that can be
________________________________________________________________
sustained. This phenomenon is most commonly evidenced
FIG. 2 Voltage Profile of Step-by-Step Test
duringthetestbyanabruptvisibleandaudiblerupturethrough
the thickness of the specimen, resulting in a visible puncture
a lower initial voltage. If failure does not occur before the and decomposition of the specimen in the breakdown area.
twelfth step or greater than 720 s, increase the initial voltage. This form of breakdown is generally irreversible. Repeated
12.2.2.6 Record the initial voltage, the voltage steps, the applicationsofvoltagewillsometimesresultinfailureatlower
breakdown voltage, and the length of time that the breakdown
voltages (sometimes unmeasurably low), usually with addi-
voltage was held. If failure occurred while the voltage was
tional damage at the breakdown area. Such repeated applica-
being increased to the starting voltage the failure time shall be
tions of voltage may be used to give positive evidence of
zero.
breakdown and to make the breakdown path more visible.
12.2.2.7 Other time lengths for the voltage steps may be
12.3.1 Arapid rise in leakage current may result in tripping
specified, depending upon the purpose of the test. Commonly
of the voltage source without visible decomposition of the
used lengths are 20 s and 300 s (5 min). For research purposes,
specimen. This type of failure, usually associated with slow-
it may be of value to conduct tests using more than one time
rise tests at elevated temperatures, may in some cases be
interval on a given material.
reversible,thatis,recoveryofthedielectricstrengthmayoccur
12.2.3 Method C, Slow Rate-of-Rise Test—Apply voltage to
the test electrodes, from the starting voltage and at the rate if the specimen is allowed to cool to its original test tempera-
shown in Fig. 3 until breakdown occurs. ture before reapplying voltage. The voltage source must trip
12.2.3.1 Selecttheinitialvoltagefromshort-timetestsmade rapidlyatrelativelylowcurrentforthistypeoffailuretooccur.
as specified in 12.2.1. The initial voltage shall be reached as 12.3.2 Tripping of the voltage source may occur due to
specified in 12.2.2.3.
flashover, to partial discharge current, to reactive current in a
12.2.3.2 Use the rate-of-voltage rise from the initial value
highcapacitancespecimen,ortomalfunctioningofthebreaker.
specified in the document calling for this test method. Ordi-
Such interruptions of the test do not constitute breakdown
narily the rate is selected to approximate the average rate for a
(except for flashover tests) and should not be considered as a
step-by-step test.
satisfactory test.
12.2.3.3 Ifmorethanonespecimenofagroupofspecimens
12.3.3 If the breaker is set for too high a current, or if the
breaks down in less than 120 s, reduce either the initial voltage
breaker malfunctions, excessive burning of the specimen will
or the rate-of-rise, or both.
occur.
12.2.3.4 Ifmorethanonespecimenofagroupofspecimens
breaks down at less than 1.5 times the initial voltage, reduce 12.4 Number of Tests—Make five breakdowns unless oth-
the initial value. If breakdown repeatedly occurs at a value erwise specified for the particular material.

D 149 – 97a (2004)
13. Calculation 15. Precision and Bias
13.1 CalculateforeachtestthedielectricstrengthinkV/mm 15.1 The results of an interlaboratory study with four
or V/mil at breakdown, and for step-by-step tests, the gradient laboratories and eight materials are summarized in Table 2.
at the highest voltage step at which breakdown did not occur. This study made use of one electrode system and one test
8
13.2 Calculate the average dielectric strength and the stan- medium.
dard deviation, or other measure of variability. 15.2 Single-Operator Precision—Depending upon the vari-
ability of the material being tested, the specimen thickness,
14. Report
method of voltage application, and the extent to which tran-
14.1 Report the following information: sient voltage surges are controlled or suppressed, the coeffi-
14.1.1 Identification of the test sample. cientofvariation(standarddeviationdividedbythemean)may
14.1.2 For Each Specimen: varyfromalow1%toashighas20 %ormore.Whenmaking
14.1.2.1 Measured thickness, duplicate tests on five specimens from the same sample, the
14.1.2.2 Maximum voltage withstood (for step-by-step coefficient of variation usually is less than 9 %.
tests), 15.3 Multilaboratory Precision—The precision of tests
14.1.2.3 Dielectric breakdown voltage, made in different laboratories (or of tests made using different
14.1.2.4 Dielectric strength (for step-by-step tests), equipment in the same laboratory) is variable. Using identical
14.1.2.5 Dielectric breakdown strength, and
A
TABLE 2 Dielectric Strength Data Summary From Four Laboratories
Dielectric Strength (V/mil)
Thickness Standard Coefficient of
Material
(in. nom.) Deviation Variation (%)
mean max min
Polyethylene 0.001 4606 5330 4100 332 7.2
Terephthalate
Polyethylene 0.01 1558 1888 1169 196 12.6
Terephthalate
Fluorinated 0.003 3276 3769 2167 333 10.2
Ethylene
Propylene
Fluorinated 0.005 2530 3040 2140 231 9.1
Ethylene
Propylene
PETP fiber 0.025 956 1071 783 89 9.3
reinforced
epoxy resin
PETP fiber 0.060 583 643 494 46 7.9
reinforced
epoxy resin
Epoxy-Glass 0.065 567 635 489 43 7.6
Laminate
Crosslinked 0.044 861 948 729 48 5.6
Polyethylene
Average 8.7
A
Tests performed with specimens in oil using Type 2 electrodes (see Table 1).
14.1.2.6 Location of failure (center of electrode, edge, or types of equipment and controlling specimen preparation,
outside). electrodes and testing procedures closely, the single-operator
14.1.3 For Each Sample: precision is approachable. When making a direct comparison
14.1.3.1 Average dielectric withstand strength for step-by- ofresultsfromtwoormorelaboratories,evaluatetheprecision
step test specimens only, between the laboratories.
14.1.3.2 Average dielectric breakdown strength,
15.4 If the material under test, the specimen thickness, the
14.1.3.3 Indication of variability, preferably the standard
electrode configuration, or the surrounding medium differs
deviation and coefficient of variation,
from those listed in Table 1, or if the failure criterion of the
14.1.3.4 Description of test specimens,
current-sensing element of the test equipment is not closely
14.1.3.5 Conditioning and specimen preparation,
controlled, the precisions cited in 15.2 and 15.3 may not be
14.1.3.6 Ambient atmosphere temperature and relative hu-
realized. Standards which refer to this method should deter-
midity,
mineforthematerialwithwhichthatstandardisconcernedthe
14.1.3.7 Surrounding medium,
applicability of this precision statement to that particular
14.1.3.8 Test temperature,
material. Refer to 5.4-5.8 and 6.1.6.
14.1.3.9 Description of electrodes,
14.1.3.10 Method of voltage application,
14.1.3.11 If specified, the failure criterion of the current-
sensing element, and 8
The complete report is available from ASTM International. Request RR:D09-
14.1.3.12 Date of test. 1026.

D 149 – 97a (2004)
15.5 Use special techniques and equipment for materials 16. Keywords
having a thickness of 0.001 in. or less.The electrodes must not
16.1 breakdown; breakdown voltage; calibration; criteria of
damage the specimen upon contact. Accuray determine the
breakdown; dielectric breakdown voltage; dielectric failure;
voltage at breakdown.
dielectric strength; electrodes; flashover; power frequency;
15.6 Bias—This test method does not determine the intrin-
process-control testing; proof testing; quality-control testing;
sic dielectric strength. The test values are dependent upon
rapid rise; research testing; sampling; slow rate-of-rise; step-
specimen geometry, electrodes, and other variable factors, in
by-step; surrounding medium; voltage withstand
addition to the properties of the sample, so that it is not
possible to make a statement of bias.
APPENDIXES
(Nonmandatory Information)
X1. SIGNIFICANCE OF THE DIELECTRIC STRENGTH TEST
X1.1 Introduction directly between the electrodes. Weak spots within the volume
under stress sometimes determine the test results.
X1.1.1 A brief review of three postulated mechanisms of
breakdown, namely: (1) the discharge or corona mechanism,
X1.4 Influence of Test and Specimen Conditions
(2)thethermalmechanism,and(3)theintrinsicmechanism,as
well as a discussion of the principal factors affecting tests on
X1.4.1 Electrodes— In general, the breakdown voltage will
practical dielectrics, are given here to aid in interpreting the
tend to decrease with increasing electrode area, this area effect
data. The breakdown mechanisms usually operate in combina-
being more pronounced with thin test specimens. Test results
tionratherthansingly.Thefollowingdiscussionappliesonlyto
are also affected by the electrode geometry. Results may be
solid and semisolid materials.
affected also by the material from which the electrodes are
constructed, since the thermal and discharge mechanism may
X1.2 Postulated Mechanisms of Dielectric Breakdown
be influenced by the thermal conductivity and the work
X1.2.1 Breakdown Caused by Electrical Discharges—In function, respectively, of the electrode material. Generally
many tests on commercial materials, breakdown is caused by speaking, the effect of the electrode material is difficult to
electrical discharges, which produce high local fields. With
establish because of the scatter of experimental data.
solid materials the discharges usually occur in the surrounding
X1.4.2 Specimen Thickness—The dielectric strength of
medium, thus increasing the test area and producing failure at
solid commercial electrical insulating materials is greatly
or beyond the electrode edge. Discharges may occur in any
dependentuponthespecimenthickness.Experiencehasshown
internal voids or bubbles that are present or may develop.
that for solid and semi-solid materials, the dielectric strength
These may cause local erosion or chemical decomposition.
varies inversely as a fractional power of the specimen thick-
These processes may continue until a complete failure path is
ness, and there is a substantial amount of evidence that for
formed between the electrodes.
relatively homogeneous solids, the dielectric strength varies
X1.2.2 Thermal Breakdown—Cumulative heating develops
approximay as the reciprocal of the square root of the
inlocalpathswithinmanymaterialswhentheyaresubjectedto
thickness. In the case of solids that can be melted and poured
high electric field intensities, causing dielectric and ionic
to solidify between fixed electrodes, the effect of electrode
conduction losses which generate heat more rapidly than can
separationislessclearlydefined.Sincetheelectrodeseparation
be dissipated. Breakdown may then occur because of thermal
can be fixed at will in such cases, it is customary to perform
instability of the material.
dielectricstrengthtestsonliquidsandusuallyonfusiblesolids,
X1.2.3 Intrinsic Breakdown—If electric discharges or ther-
with electrodes having a standardized fixed spacing. Since the
mal instability do not cause failure, breakdown will still occur
when the field intensity becomes sufficient to accelerate elec- dielectric strength is so dependent upon thickness it is mean-
trons through the material. This critical field intensity is called ingless to report dielectric strength data for a material without
the intrinsic dielectric strength. It cannot be determined by this stating the thickness of the test specimens used.
test method, although the mechanism itself may be involved. X1.4.3 Temperature—The temperature of the test specimen
and its surrounding medium influence the dielectric strength,
X1.3 Nature of Electrical Insulating Materials although for most materials small variations of ambient tem-
X1.3.1 Solid commercial electrical insulating materials are perature may have a negligible effect. In general, the dielectric
generally nonhomogeneous and may contain dielectric defects strength will decrease with increasing temperatures, but the
of various kinds. Dielectric breakdown often occurs in an area extent to which this is true depends upon the material under
of the test specimen other than that where the field intensity is test. When it is known that a material will be required to
greatest and sometimes in an area remote from the material function at other than normal room temperature, it is essential

D 149 – 97a (2004)
that the dielectric strength-temperature relationship for the properties are usually such that edge breakdown will generally
material be determined over the range of expected operating occur if the electric strength, E , approaches the value given
s
temperatures. by:
X1.4.4 Time—Test results will be influenced by the rate of
4.2 63
E kV/mm (X1.4)
voltage application. In general, the breakdown voltage will s 5 Sts 1e8sD
tend to increase with increasing rate of voltage application.
In cases of large thickness of specimen and low permittivity
This is to be expected because the thermal breakdown mecha-
of specimen, the term containing t becomes relatively insig-
s
nismistime-dependentandthedischargemechanismisusually
nificant and the product of permittivity and electric strength is
time-dependent, although in some cases the latter mechanism 10
approximay a constant. Whitehead also mentions (p. 261)
may cause rapid failure by producing critically high local field
that the use of moist semiconducting oil can affect an appre-
intensitives.
ciablereductioninedgedischarges.Unlessthebreakdownpath
X1.4.5 Wave Form—In general, the dielectric strength is
between the electrodes is solely within the solid, results in one
influenced by the wave form of the applied voltage.Within the
medium cannot be compared with those in a different medium.
limitsspecifiedinthismethodtheinfluenceofwaveformisnot
It should also be noted that if the solid is porous or capable of
significant.
being permeated by the immersion medium, the breakdown
X1.4.6 Frequency—The dielectric strength is not signifi-
strength of the solid is directly affected by the electrical
cantly influenced by frequency variations within the range of
properties of immersion medium.
commercial power frequencies provided for in this method.
X1.4.8 Relative Humidity—The relative humidity influ-
However, inferences concerning dielectric strength behavior at
ences the dielectric strength to the extent that moisture ab-
other than commercial power frequencies (50 to 60 Hz) must
sorbed by, or on the surface of, the material under test affects
not be made from results obtained by this method.
the dielectric loss and surface conductivity. Hence, its impor-
X1.4.7 Surrounding Medium—Solid insulating materials
tance will depend to a large extent upon the nature of the
havingahighbreakdownvoltageareusuallytestedbyimmers-
material being tested. However, even materials that absorb
ing the test specimens in a liquid dielectric such as transformer
little or no moisture may be affected because of greatly
oil, silicone oil, or chlorofluorocarbons, in order to minimize
increased chemical effects of discharge in the presence of
theeffectsofsurfacedischargespriortobreakdown.Ithasbeen
9 moisture. Except in cases where the effect of exposure on
shownbyS.Whitehead thatinordertoavoiddischargesinthe
dielectric strength is being investigated, it is customary to
surrounding medium prior to reaching the breakdown voltage
control or limit the relative humidity effects by standard
of the solid test specimen, in alternating voltage tests it is
conditioning procedures.
necessary that
2 2 X1.5 Evaluation
E D 1 E D 1 (X1.1)
me8m = m 1 . se8s = s 1
X1.5.1 A fundamental requirement of the insulation in
If the liquid immersion medium is a low loss material, the electrical apparatus is that it withstand the voltage imposed on
criterion simplifies to it in service. Therefore there is a great need for a test to
evaluatetheperformanceofparticularmaterialsathighvoltage
2
E E D 1 (X1.2)
me8m . se8s = s 1 stress. The dielectric breakdown voltage test represents a
and if the liquid immersion medium is a semiconducting convenient preliminary test to determine whether a material
material the criterion becomes merits further consideration, but it falls short of a complete
evaluation in two important respects. First, the condition of a
E 2 f E (X1.3)
msm . p er e0 s
material as installed in apparatus is much different from its
condition in this test, particularly with regard to the configu-
where: ration of the electric field and the area of material exposed to
E = electric strength,
it, corona, mechanical stress, ambient medium, and association
f = frequency,
with other materials. Second, in service there are deteriorating
e and e8 = permittivity,
influences, heat, mechanical stress, corona and its products,
D = dissipation factor, and
contaminants, and so forth, which may reduce the breakdown
s = conductivity (S/m).
voltage far below its value as originally installed. Some of
Subscripts:
these effects can be incorporated in laboratory tests, and a
m refers to immersion medium,
better estimate of the material will result, but the final
r refers to relative,
consideration must always be that of the performance of the
0 refers to free space,
-12 material in actual service.
(e0 =8.854310 F/m) and
X1.5.2 The dielectric breakdown test may be used as a
s refers to solid dielectric.
material inspection or quality control test, as a means of
X1.4.7.1 Whitehead points out that it is therefore desirable
to increase E and ,or , if surface discharges are to be
m em sm
avoided. Transformer oil is usually specified and its dielectric 10
Starr, R. W., “Dielectric Materials Ionization Study” Interim Engineering,
Report No. 5, Index No ME-111273.Available from Naval Sea Systems Command
Technical Library, Code SEA 09B 312, National Center 3, Washington, DC
9
Whitehead, S., Dielectric Breakdown of Solids, Oxford University Press, 1951. 20362-5101.

D 149 – 97a (2004)
inferring other conditions such as variability, or to indicate the test it is the relative value of the breakdown voltage that is
deteriorating processes such as thermal aging. In these uses of important rather than the absolute value.
X2. STANDARDS REFERRING TO TEST METHOD D149
X2.1 Introduction X2.1.2 In some standards which specify that the dielectric
strength or the breakdown voltage is to be determined in
X2.1.1 The listing of documents in this appendix provides
reference to a broad range ofASTM standards concerned with accordance with Test Method D 149, the manner in which the
determination of dielectric strength at power frequencies or reference is made to this test method is not compley in
with elements of test equipment or elements of procedural conformance with the requirements of 5.5. Do not use another
details used to determine this property. While every effort has document, including those listed in this appendix, as a model
been made to include as many as possible of the standards forreferencetothistestmethodunlessthereisconformitywith
referring to Test Method D 149, the list may not be complete, 5.5.
and standards written or revised after publication of this
appendix are not included.

華洋試驗(yàn)機(jī)產(chǎn)品網(wǎng):http://www.huayangyq.com

 

華洋儀器展覽網(wǎng):http://www.huayangyq.net

 

華洋儀器化工網(wǎng):http://www.szqnb.com

 

華洋儀器百業(yè)網(wǎng):http://www.jlhyyq.cn

 

 

国产乱子伦视频在线观看| 99久久免费高清热精品| 狠狠五月天久久综合| 精品国产亚洲av麻豆狂野| 国产尤物高清在线观看| 热の无码热の有码热の综合| 日本不卡一区二区三区在线观看| 91久久精品无码一区二区大| 国产福利一区在线观看蜜臀av| 日韩av无码av加勒比不卡| 男的下面猛操小穴流水视频| 啊啊啊水好多在线观看| 天天操天天操天天操天天操天天日1 | 国产精品理人伦一区二区| 亚洲国产精品欧美久久久| 精品人妻一区二区三区四区视频| 精品成人女同一区二区三区| 国产成人高潮免费观看精品 | 亚洲欧洲综合一区二区| 五月天在线视频观看婷婷| 亚洲综合日韩一二三区| 黑人大鸡巴操日本女人| 高潮潮喷久久中文字幕电影| 精品国产av在线视频| 国产偷人妻精品一区二区三区 | 国产漂亮美女在线观看| 岛国爱情动作片久久蜜桃av| 99精品国产再热久久无毒不卡 | 男生鸡巴操女生鸡巴的软件 | 国产精品视频免费关看| 亚洲精品高清国产一线久久| 国内激情一区二区三区| 国产熟女视频一区二区免费| 亚洲成a人片77777潘金莲| 国产成人综合在线观看不卡| 亚洲av成熟国产一区二区三区| 四十如虎的丰满熟妇啪啪| 日日干夜夜操天天日| 黑人巨大三根一起进在线观看 | 国产美女一级在线观看| 1区1区产品乱码芒果榴莲| 少妇av一区二区丰满蜜桃| 日本一级黄片在线观看| 最新中文字幕久久人妻| 国产一区二区三区性爱视频| 98人妻人人做人碰人人爽| 精品一区中文字幕少妇人妻 | 国产成人老熟女久久久久| 欧美三级欧美一级在线| 亚洲色吊丝欧美色吊丝另类| 福利姬国产精品一区二区| 日韩精品高清视频在线观看| 国产高清一区二区二三区| 日韩精品一区二区三区精品视频| 国产视频五月天在线观看| 亚洲一区 欧美 日韩| 精品99一区二区三区麻豆| 伊人成人成人综合网| 97人妻人人柔人人澡人人| 免费av资源一区二区三区| 中文字幕在线一区av| 91精品久久久一区二区三区| 欧美一区二区三区自拍| 2021亚洲国产精品自拍| 欧美日韩性生活视屏手机在线| 欧美乱子伦xxxx熟妇| 香蕉尹人综合在线观看| 欧美激情精品久久999成人免费| 成年人免费黄片内射国产| 性感的老人的日BB视频| 日韩性生活黄色一级片| 国产中文字幕一二三四区| 国产综合无码一区二区辣椒| 中文字幕精品经典视频| 国产AV魔鬼身材美女相亲| 亚洲精品黄页网站在线观看| 日本不卡一区二区三区在线观看 | 国产精品女在线观看| 欧美亚洲中文字幕第一页| 国产成人精品久久综合| 久久人人97超碰婷开心情五月| 欧亚蜜桃一区二区三区| 国产精品乱码久久久久毛片| 亚洲人妻巨乳中文字幕| 欧美日韩性生活视屏手机在线| 国产精品视频第一区二区三区| 丝袜肉丝一区二区三区| 日韩精品久久不卡中文字幕| 亚洲精品视频免费在线播放| 日本久久精品免费视频| 国产精品久久久久一区二区三| 最新中文字幕熟女诱惑| 亚洲精品国产熟女久久久香蕉| 在线视频播放亚洲婷婷| 久久人人97超碰婷开心情五月| 初尝黑人巨砲波多野结衣183| 国产老太太日B小视频| 国产成人AV无卡在线观看| 国产精品久久久久久网址| 大香蕉一区二区三区在线观看 | 熟妇女人妻丰满小妇| 伊人成人成人综合网| 国模雅琪和悠悠制服女同| 久久久久九九九肉丝91| 丰满人妻精品一区二区在线| 欧洲亚洲精品中文字幕乱码| 少妇夜夜春夜夜爽试看视频 | 日韩美女视频一区二区三区| 国产精品精品久久久久久潘金莲 | 国产黄片一区二区在线| 大鸡巴黑人无码1级片| 日韩中文字幕免费激情视频| 久久人人97超碰婷开心情五月 | 男的大鸡吧插进女的比爆操视频| 被邀请的人妻本庄优花| 国产美女一级做受在线观看| 国产suv精品一区二av1| 男女在线视频观看国产| 久久久久aⅴ精品一区二区 | 中文字幕高清精品一区| 黄色av日产在线观看| 主播喷水视频网站91| 中文字幕日本亚洲精品免费| 国产一级av免费网站| 欧美综合区自拍亚洲综合绿色| 夫妻性生活三级视频| 日本一区二区高清免费| 激情综合激情综合激情| 国产三级黄片在线播放| 成人亚洲国产综合精品| 欧美日韩国产精品乱人伦| 国产一级av免费网站| 国产三级在线观看不卡| 天天日天天射天天操天天干| 国内激情一区二区三区| 91久久香蕉氩炫呖| 91狠狠色噜噜狠狠狠7777| 欧美日韩国产欧美日韩国产欧美日韩| 精品久久久无码中文字幕一丶 | 欧美一区二区二区精品乱码| 色婷婷孕妇av一区二区三区| 国产成人高潮免费观看精品| 91精品久久久老熟女9久| 亚洲午夜精品久久久久久性色| 欧美日韩国产欧美日韩国产欧美日韩| 特级av一区二区三区| 欧美日韩国产在线人成网站| 欧美情欲片一区二区三区| 日韩欧美中文字幕少妇| 国产日韩欧美亚洲精品| 欧美一区二区三区色呦视频| 国产日韩欧美高清一区| 男女啊啊视频在线观看| 91啪国产福利在线| 亚洲成a人一区二区三区| 美女在线播放一区二区三区 | 丰满熟美五十路熟女在线视频| 四虎精品久久久久久| 欧美日本中文字幕视频熟妇| 精品一区二区三区久久久久久久久 | 视频一区二区三区国产在线| 免费一区二区三区91| 国产精品国产精品国产专| 一区二区三区四区韩国在线视频| 1区1区产品乱码芒果榴莲| 120分钟内射视频| 91精品久久久老熟女9久| 久久久少妇熟女精品一区| 欧美 亚洲 一区 日韩| 久久久亚洲精品老地址| 日日摸夜夜添夜夜添无码国产 | 色婷婷一区二区蜜桃视频 | 污污国产精品免费在线观看| 国产av动漫一区二区| 欧美精品一区二区在线看| 国产高清精品免费一区| 精品国产区久久久久久av| 久久精品综合亚洲精品鲁鲁| 欧美 亚洲 一区 日韩| 激情五月天在线观看色| 一区二区三区女人毛片| 久久久久久久久久久久久久久网| 99国产精品免费视频观看8| 蜜桃臀av一区二区三区| 欧美激情性国产欧美无遮挡| 男人用黑大鸡巴抽插女人小逼视频| 国产精品免费久久久久| 日韩精品高清视频在线观看| 在线观看国产三级片视频| 老鸭窝91久久精品色噜噜| 精品韩国一区 亚洲二区| 日本色电影一区二区| 欧美黄色大片一区二区三区| 亚洲熟女乱色综合亚洲小说| 日韩av一区二区三区免费看| 亚洲成av人片不卡无码| 国产真实灌醉下药福利论坛| 丰满人妻一区二区三区免费视频棣 | 污污视频网站免费在线看 | 亚洲性一区二区三区av | 久99久热只有精品国产女同| 夫妻性生活三级视频| 精品成人国产欧美日韩系| 精品一区二区三区四区视频观看| 日本理论片区新片区一区二区三区| 小美女国产精品夜间视频香蕉| 亚洲线精品一区二区| 欧美大鸡巴插女人阴道视频 | 日韩精品中文字幕少妇| 亚洲色图欧美自拍偷拍| 别揉我奶头~嗯~啊~| 欧美裸体性做爰免费视频| 日韩在线视频一二三| 国产亚洲精品久久久久久无| 一区二区三区婷婷月色| 在线观看免费无码a片视频| 亚洲欧美中文日韩中文字幕| 午夜色婷婷一区二区三区| 啪啪啪欧美视频免费在线观看| 国产成人区一区二区三区| 18禁亚洲免费网站| 欧美日韩国产欧美日韩国产欧美日韩| 男生把坤坤伸入女孩的屁股里| 中文字幕在线播放一区二区不卡| 精品少妇一二三区免费看 | 手机福利大片大鸡巴一| 久久久久久亚洲国产精品| 91成人短视频在线下载| 久久精品福利视频导航| 鸡吧插入逼逼免费视频| 一区二区三区免费观看的视频| 99这里有精品免费视频20| 神马午夜久久午夜久久午夜| 国产欧美一区视频在线观看| 99在线精品在线精品| 国产精品成人精品国产| 国产电影久久久久久久久久| 黄片日韩欧美在线观看| 风韵犹存的熟妇老师| 97人妻在线超碰精品| 91精品久久久一区二区三区| 免费欧美高清码二三区| 中文成人无码精品久久久不卡| 99国产欧美久久久精品蜜芽| 日本欧美精品久久久| 男生把坤坤伸入女孩的屁股里| 熟妇女人妻丰满小妇| 欧美精品一区二区久久久观看| 青青操逼喔嗯啊使劲视频| 黄片一级欧美日韩一区二区| 男女在线视频免费观看| 国产91精品久久久久久久粉嫩| 91麻豆亚洲国产成人久久精品| 麻豆www久久国产精品| 有意境的性爱古装捅插插| 今生也是第一次电视剧免费观看 | 亚洲视频一区二区欧美视频播放| 精品三区四区在线观看| 99热日卡精品偷拍区二区| 国产尤物福利在线不卡| 欧美不卡视频一区二区三区 | 亚洲欧美日韩国产一二区三区| 国产欧美日韩一区二区| 成年人看的视频黄色| 国产欧美亚洲一区二区| 日韩欧美中文字幕少妇 | 欧洲黑人黄毛片在线视频| 国产精品色哟哟在线免费观看| 成年人看的视频黄色| 青草草在线视频免费观看| 欧美激情视频在线全球共享| 国产成人高潮免费观看精品| 亚洲熟女乱色综合一区二区三区| 久久久精品人妻一区二区三区蜜桃 | 日韩欧美日韩丝袜美腿| 120分钟内射视频| 日韩欧美有码中文字幕| 小桃酱精品一区二区三区在线 | 男人女人插肌巴视频软件| 久久久亚洲国码av| 欧美中文字幕在线视频观看| 日韩 欧美 国产一区二区| 欧美亚洲另类久久综合二区| 吊视频一区二区三区四区五区| 成人国产亚洲欧美日韩| 亚洲综合久久一区二区| 亚洲精品国产一区二区久久| 国产精品亚洲av三区ssni | 国产午夜精品在线免费观看| 亚洲国产欧美在线观看片不卡| 日本人妻熟女中文字幕| 亚洲欧美日韩一级特黄在线| 久久激情五月丁香下载伊人| 99伊人亚洲综合在线| 国产一区二区中文字幕在线| 亚洲欧美一区二区图片在线| 欧美熟综合久久久久久免费看| 亚洲熟女乱色综合亚洲小说| 欧美久久久久一区二区三区| 久久精品综合亚洲精品鲁鲁| 亚洲制服丝袜av一区二区三区| 亚洲成人av在线网站| 久久精品福利视频导航| 亚洲成人最大在线观看| 国产av麻豆办公室秘书| 亚洲区一区二在线免费观看| 欧亚蜜桃一区二区三区| 欧美日韩国产在线高清| 国产日韩欧美一区二区三区乱码| 日本精品久久久中文字幕| 欧美久久久久一区二区三区| 欧美激情四射一区二区三区| 成人精品精品视频在线播放| 中文日韩不卡视频在线观看| 欧美综合亚洲日韩精品区| 97超碰国产精品最新| 欧美亚洲色综久久精品国产 | 久久激情五月丁香下载伊人| 黄色片在线观看中文字幕 | 欧美在线成人激情视频| 亚洲av欧美av在浅| 绪川凛人妻adn044| 亚洲熟女人妻一区二区三区| 日韩综合中文字幕在线视频 | 麻豆网址在线观看视频| 日韩一区二区又粗又大| 又大又长又粗又爽国产| 男生鸡巴操女生鸡巴的软件| 丰满熟女精品一区二区三区| 日韩熟女精品日韩网站| 国产精品亚洲av三区ssni| 日韩中文字幕免费激情视频| 教官好硬好爽好多水在线视频| 亚洲欧美一区二区三区情侣99| 69精品久久久久中文字幕| 中文字幕一区二区专区| 亚洲欧美综合制服丝袜| 午夜aaa片一区二区专区| 国产情爱视频免费观看| 久久精品视频91一区二区三区| avtt亚洲av天堂资源网一区| 嫩逼插入啊啊操逼视频免费观看| 日韩精品久久不卡中文字幕| 国产无遮挡免费视频在线老司| 午夜影院免费观看在线| 亚洲人妻免费在线视频| 高清二区三区一区日本| av中文资源在线观看| 中文字幕精品经典视频| 日本精品人妻久久久一区二区| 精品少妇一二三区免费看| 一色屋精品久久久久久久久久| 国产伦精品一区二区三区视频9| 国产精品欧美大片在线观看| 久久五月份婷婷激情电影| 国产精品视频第一区二区三区 | 亚洲国产精品日韩在线观看 | 秋霞在线一区二区三区四区| 久久久久久亚洲国产精品| 亚洲一区2区三区4区5区| bigbbw丰满大胸| 中文字幕精选一区二区视频 | 国产女人乱人伦精品一区二区| 别揉我奶头~嗯~啊~| 久久91这里精品国产2020| 国产无遮挡免费视频在线老司| 久久久人人爽人人av| 日本欧美精品久久久| 啊啊啊好大大尺度在线91鸡播放| 制服丝袜在线中文字幕人妻 | 国产尤物高清在线观看| 美女高潮视频h久久| 精品一区中文字幕少妇人妻| 国产亚洲精品久久久久久无| 国产欧美日韩精品午夜在线播放| 色婷婷色国产蜜臀av| 中文字幕人妻熟熟女在线视频 | 亚洲精品国产一区二区三区在线| 国内激情一区二区三区| 轻轻草在线视频免费观看| 伊人久久久久久久久久久久久| 偷拍一区二区三区久久 | 欧美熟妇人妻在线视频| 91精品久久久老熟女9久| 国产高潮国产精品久久久| 国产欧美一区二区不卡| 天天日天天操天天射综合网| avtt亚洲av天堂资源网一区| hongkong玩偶国产精品| 亚洲精品 国产一区| 青草福利视频在线播放| 午夜在线最熱門最齊全的電影| 亚洲精品国产番号在线观看| 性感裸体美人视频网站| 久久久黄色三级视频| 亚洲综合久久一区二区| 日韩精品中文字幕视频在线播放| 国产成人精品一区二区国产乱码| 日本丰满老熟女afxx| 亚洲区一区二在线免费观看| 国产精品久久久久粉嫩| 欧美日韩国产欧美日韩国产欧美日韩| 欧美一区二区视频精品| 久久久久久久久久久久久国产论坛| 一区二区三区免费观看的视频| 三上悠亚亚洲一区二区| 大桥未久一区二区三区| 国产精品视频一区啪啪啪| 日韩中文字幕免费激情视频| 亚洲欧美中文字幕变态另类| 18国产午夜福利一二区| 一级做a爰片久久毛片16 | 国产精品久久久久久久泡妞| 老人看护一区二区在线| 91狠狠色噜噜狠狠狠7777 | 日韩av网一区二区三区四区| 久久久久久裸体电影一区二区三| 国产a三级三级三级看三级| 亚洲欧洲综合一区二区| 教官好硬好爽好多水在线视频| 中文字幕亚洲一二三区| 欧美久久区一区二区三| 亚洲线精品一区二区| 一区二区三区 av| 亚洲综合久久一区二区| 久久久久亚洲精品天堂;| 欧美一区二区三区中文字幕| 99久久免费高清热精品| 欧美一区—二区—三区| 久久久亚洲国码av| 一区二区三区鲁丝不卡| 中文人妻熟女乱又乱精品| 亚洲欧洲av一区二区久久不卡| 有意境的性爱古装捅插插| 狠狠中文字幕一区二区| 亚洲一级特黄大片在线播放| 日本女同性专区一区二区三区| 天天透天天操天天日| 性色av天美av麻豆av| 欧美日韩激情啪啪啪一区二区三区 | 日本精品二区四区五区| 好看电影网亚洲一区| 干骚货人妻视频在线播放| 大胆欧美熟妇xxx| 国产精品久久久久久久泡妞| 夜夜操天天操天天操天天操| 亚洲综合国产精品免费| 性生话一级视频欧美黑人| 亚洲熟女精品不卡一区二区| 国产偷摄中国推油按摩富婆| 9l国产自产一区二区三区| 国产欧美一区二区不卡| 国产一级黄色片免费看| 欧美日韩性生活视屏手机在线| 2020年国产新视频| 亚洲少妇一区二区三区| 两女互摸自慰喷水爽哭文| 1区1区产品乱码芒果榴莲| av黄色资源中文字幕| 国产精品久久久久久秋| 国产又长又粗又猛又爽又黄的视频| 日韩男女草逼的视频免费观看| 久久久亚洲av动漫| 中文字幕人妻一区二区三区69| 亚洲中文字幕综合一区| 成人黄色一级片免费观看| 日本一二三区不卡高清区| 精品一区二区三区蜜桃在线| 欧美经典日韩精品一区二区| 欧洲亚洲精品中文字幕乱码| 久久久亚洲熟妇熟性之爱| 国语自产偷拍精品视频偷97| 日韩乱妇乱女熟妇熟女网站| 有意境的性爱古装捅插插| 中文人妻熟妇乱精品成熟| 99在线精品在线精品| 欧美18一19性hd| 丰满人妻熟妇乱又伦精品668| 最新偷窥偷拍视频网址| 国产又粗又黄又爽又长| 毛片嗯嗯啊啊啊大鸡吧视频| 午夜精品久久久久久久爽| 久久久久久久九九激情| 国产一二三四2021精字窝| 亚洲欧美综合区丁香六月| 日韩女同性恋精品一二三区 | 久久久久久久久久久久久久就 | 青青操逼喔嗯啊使劲视频| 男女做爰全过程69视频| 东北老熟女一区二区三区| 国产女人乱人伦精品一区二区| 五月婷婷中文字幕一二三区| 午夜精品一区二区在线观看| 91综合网一区二区三区四区| 国产精品一区二区三区精品久久久| 国产精品高潮呻吟内射视频| 国内精品久久久18p| 逼久久久久久久久久久久| 免费视频播放器哪个牌子最好用| 欧美日韩国产在线人成网站| 成人黄色片一区二区三区| 成人国产亚洲欧美日韩| 精品久久久久久无码一区二区| 日日干夜夜操天天日| av在线免费观看不卡的| wwwwxxx久久| 在线观看免费无码a片视频| 中文字幕精品人妻丝袜| 国产亚州欧美一区二区三区| 一区二区日本免费大片| 国产中文字幕一二三四区| 你懂得午夜视频丰满性熟妇| 欧美日韩国产精品自拍视频| 久久久久久久久免费午夜电影| 国产精品阿女在线观看| 人妻精油按摩av电影在线| 九九国产精品入口麻豆 | 資源18禁超污无遮挡无码| 中文字幕亚洲欧美一区二区| 国产专区 一区二区 在线播放| 国产又粗又黄又爽又猛| 3atv精品国产一区二区欧美| 色综合久久中文综合久久激情| 成人黄色一级片免费观看| 欧美乱子伦xxxx熟妇| 日韩超黄视频在线观看| 又大又长又粗又硬又刺激的黄片| 精品国产成人一区二区不卡在线| 老外和中国女人毛片免费视频| 一级美女名星操逼视频| 久久久人妻精品中文字幕| 欧洲亚洲精品中文字幕乱码| 欧美黄色大片一区二区三区| 欧美中文字幕91麻豆日逼视频 | 亚洲老熟女妇色五十六路| 国产精品a国产精品a| 国产老太太日B小视频| 亚洲色图欧美自拍偷拍| 精品乱码一区二区三区不卡视频 | 亚洲熟女乱色综合亚洲小说| 熟女高潮视频一区二区| 日本精品久久久中文字幕| 大鸡巴黑人无码1级片| 午夜精品一区二区三区| 天天干夜夜操人人妻| 精品人妻一区二区三区四区视频| 色综合视频一区二区三区44| 好爽好大好紧免费视频| 狠狠人妻久久久久综合蜜桃| 成人国产亚洲欧美日韩| 五月婷婷六月丁香激情综合| 亚洲欧美日本综合久久| 91久久精品无码一区二区大| 伊人久久大香线蕉av仙人| 欧美亚洲色综久久精品国产| 日韩精品一区二区三区精品视频| 国产一级精品在线播放| 国产亚洲欧洲综合777| 久久91这里精品国产2020| 免费看黄片拿大粗鸡巴操逼| 国产一区二区视频日本| 成人黄色一级片免费观看| 久久久少妇熟女精品一区| 亚洲欧美日韩国产精品二区| 一区二区三区视频日本精品| 国产日韩aaaaaaa毛片| 黑人巨大精品欧美一区二区桃| 中文字幕精品经典视频| 国产精品阿女在线观看| 色婷婷色国产蜜臀av| 欧美和老女人操屄乱视频 | 国产黄片一区二区在线| 亚洲精品视频免费在线播放| 欧美黑人猛交性久久| 一级日韩欧美一区二区在线| 欧美熟妇一区二区二区激情综合| av黄色资源中文字幕| 日韩国产中文字幕av| 精品一区二区三区蜜桃在线| 欧美和老女人操屄乱视频 | 婷婷色综合成人成人网小说| 欧美一区二区三在线播放| 欧美 亚洲 一区 日韩| 一级日韩欧美一区二区在线| 亚洲色图欧美自拍偷拍| 久久久久久久九九激情| 成人久久久久久久久久久| 日韩精品在线视频中文字幕| 天天色天天爽天天日天天射| 手机福利大片大鸡巴一| 成人黄色片一区二区三区| 成人短视频免费日韩| 国产美女嫩模精品一区二区| 性生话一级视频欧美黑人| 国产情爱视频免费观看| 老外和中国女人毛片免费视频| 精品人妻一区二区三区久久嗨| 久久久久久久久午夜| 国模雅琪和悠悠制服女同| 韩国黄色精品一区二区三区| 国产精品资源站在线观看一区二区 | 欧美精品一区二区久久久观看| 日本丰满老熟女afxx| 国产亚洲精品女人久久网| 国产日韩欧美高清一区| 欧美日韩国产高清大片| 欧美精品一区二区久久久观看| 国产中文字幕一二三四区| 美日韩人妻熟妇精品不卡一二三| 大桥未久一区二区三区| 欧美午夜激情视频在线观看| 国产三级在线观看不卡| 日韩欧美一级片免费播放视频| 国产亚洲精品女人久久网| 2022国产精品手机在线观看 | 免费的三级黄色中文字幕| 国产福利一区在线观看蜜臀av| 少妇高潮喷水久久久久久久久| 国产三级在线免费观看网站| 亚洲人妻在线视频观看| wwwwxxx久久| 久久久精品妇女99| 亚洲欧美综合区丁香六月| 日韩在线视频一二三| 老熟女国产综合视频| 麻豆精品无码久久久久| 日韩视频高清不卡二区三区| 欧美激情视频在线网址| 国产av麻豆办公室秘书| 99精品欧美一区二区三区三| 日韩综合中文字幕在线视频| 精品国产久久久久久人妻| 婷婷激情五月天综合基地| 久久九色综合九色99伊人| 久久久久久久久免费午夜电影 | 国产欧美日本一区二区三区 | 欧美国产日韩在线不卡| 国产精品国产自线拍免费软件 | 午夜诱惑免费视频福利| 久久久久精品国产14女子| 天堂网AV无码一区二区| 国产一区二区三区另类| 日本亚洲欧美一区二区| 99精品国产再热久久无毒不卡| 国产中文乱码字幕无线观看| 午夜激情福利视频在线观看| 亚洲综合久久一区二区| 国产美女嫩模精品一区二区| 国产成人高潮免费观看精品 | 少妇高潮精品叫久久久| 超碰在线免费公开97| 男人弄逼弄出高潮的视频| 色综合久久中文综合久久激情| 夫上司に犯された人妻| 国产一区二区在线观看欧美| 国产精品a国产精品a| 久久一久久精品男人天堂av| 久精品视在线中文字幕| 国产高清免费午夜在线视频| 欧美日韩午夜视频在线播放| 日韩欧美国产综合网| 亚洲宅男精品一区在线观看| 欧美一区二区三区动漫| 激情五月天在线观看色| 天天干夜夜操人人妻| 啪啪啪欧美视频免费在线观看| 国产日韩亚洲欧美另类| 超碰在线免费公开97| 91人人添人人妻dvd| 2021精品久久久久精品免费网| 亚洲欧洲av一区二区久久不卡| 精品国产污网站免费观看| 亚洲国产美国产综合一区| 草草草在线观看免费视频免费观看| 一级做a爰片久久毛片16| 色综合久久超碰色婷婷| 国内精彩自拍视频在线播放| 欧美丰满熟妇bbbb| 国产男女无遮挡猛进猛出免费视频 | 丰满老熟女一区二区三区| 激情综合网伊人久久| 日韩 欧美 国产一区二区| 国产亚洲精品久久久97| 丰满老熟女一区二区三区| 午夜福利区免费看试验区| 一区二区三区久久中文字幕| 美女房事全黄视频免费看| 99国产欧美久久久精品蜜芽| 国产精品久久精品日日| 日本区一区二区三视频 | 夫妻性生活三级视频| 日本一二三区不卡高清区| 亚洲精品国产番号在线观看| 日本精品久久久中文字幕| 欧美一区二区三区免费高| 亚洲一区二区三区精品女人| 毛片嗯嗯啊啊啊大鸡吧视频| 制服丝袜在线中文字幕人妻| alettaocean 欧美| 亚洲精品啊啊啊啊啊啊视频| 日本熟妇孕妇孕交视频| 人妻系列视频精品免费 | 国产精品乱码久久久久毛片| 韩国黄色精品一区二区三区| 国产伦一区二区三区高清| 亚洲综合激情另类小说| 男人的天堂网站在线播放| 国产熟女一区二区三区熟妇视频| 久久久噜噜噜久久中文福利| 日韩高清中文字幕一区二区| 美女脱个精光露出尿口视频| 久久久精品国产日韩欧美| 亚洲激情一区二区三区在线| 日本少妇电影一区二区| 小桃酱精品一区二区三区在线| 国产一级a毛一级a做免费视频| 亚洲高清大鸡巴尻小逼逼| 国产美女狂喷水潮在线播放| 亚洲av二区三区成人| 在线视频播放亚洲婷婷| 欧美一区二区三区色呦视频| 欧美亚洲色综久久精品国产| 久久精品亚洲精品五月天| 国产人妻无码一区二区三区| 老人看护一区二区在线| 欧美午夜激情视频在线观看| 欧美激情亚洲综合在线| 黄色av影片在线免费观看| 久久久亚洲av动漫| 着衣爆乳揉みま痴汉中文字幕| bigbbw丰满大胸| 欧美一区—二区—三区| 国产精品女在线观看| 神马午夜久久午夜久久午夜| 亚洲国产在线精品国自产拍| 噜噜噜久久久噜噜噜熟女色| 午夜福利一区二区三区视频| 国产挤奶水在线视频播放| 国产一级av免费网站| 日韩欧美国产精品1区二区| 日韩精品 中文字幕在线| 亚洲中文字幕av无码专区| 男生把坤坤伸入女孩的屁股里| 日韩欧美精品96一区二区| 日韩理伦片中文在线观看| 99久久999久久久精品人圆 | 免费老年人一级毛片在线播放| 性高湖久久久久久久久| 久久久久久久久久久久久国产论坛| 亚洲综合久久一区二区| 99国产精品久久久| 麻豆精品无码久久久久| 好多18久久久爽白浆高潮| 亚洲人成精品久久久久999 | 国产精品久久久久7777| 国产精品理人伦一区二区| 欧美色图校园春色小说| 日韩国产欧美精品一区二区三区| 日本久久精品免费视频| 日韩av无码av加勒比不卡| 扒开美女下面喷白浆视频| 国产福利在线观看91精品| 欧美 亚洲 一区 日韩| 一级片在线观看中文字幕| 狠狠五月天久久综合| 性爱a片高清无码免费看| 玩超薄丝袜人妻中文字幕| 一一区二区三区美女性感| 狠狠五月天久久综合| 尤物视频在线观看视频| 欧美日韩精品三区四区| 中文在线三级中文字幕| 亚洲黄色av影片久久久| 国产无遮挡免费视频在线老司| 日本一区二区三区av电影| 50黄色片开心五月深婷| 性感全裸黑丝美c逼女自慰| 亚洲一区二区三区中文字| 污污国产精品免费在线观看 | 日本亚洲欧美一区二区| 日日干夜夜操天天日 | 香蕉伊蕉伊中文在线视频| 午夜影院免费观看在线| 人妻出轨中文字幕办公室中出| 日韩欧美中文字幕少妇| 国产精品免费香蕉视频网 | 成年人免费黄片内射国产| 韩国精品一区二区三区一| 欧美一区—二区—三区| 亚洲成人精品av一区二区| 肏着黑丝欧美美女的骚穴| 香蕉伊蕉伊中文在线视频| 久久一区二区三区网| 少妇色精品中文字幕| 精品国产久久久久久人妻| 国产又粗又长又爽又猛的视频| 欧美日本韩国一区二区三区四区| 欧美日韩免费一区二区三区影视| 美女房事全黄视频免费看| 亚洲精品成人无遮挡毛片| 国产一线大片观看久久| 男人用鸡鸡桶女人性高潮视频 | 出轨的白嫩人妻少妇女邻居视频| 着衣爆乳揉みま痴汉中文字幕| 欧美精品国产极品都市激情| 少妇被鸡巴猛烈插视频| 男人的天堂一级黄色片| 美女日本喷水抽搐高潮视频| 偷拍一区二区三区久久| 国产不卡在线小视频| 日本人妻视频在线播放| 欧美肉肉视频在线观看| 精品视频一区二区三区免费播放| 精品人妻一区二区三区久久嗨 | 亚洲中文字幕在线视频91| 国产又长又粗免费视频| 美女诱惑视频免费观看网站| 国产精品va在线观看视色| 日本一区中文字幕在线播放| 97成人精品国产97久久久久久粉红| 97成人精品国产97久久久久久粉红 | 欧美情欲片一区二区三区| 99精品久久久久久久久人妻| 国产成人精品视频午夜蜜蜂| 亚洲欧美日韩颜射极品| 中文字幕av一区二区三区高| 日韩精品高清不卡一区二区三区| 精品国产区久久久久久av| 鸡巴操丝袜女老板视频在线| 日本一区二区三区av电影| 扒开美女下面喷白浆视频| 亚洲制服丝袜av一区二区三区| 久草热久草中文在线视频| 一区二区三区女人毛片| 精品乱码一区二区三区不卡视频| 亚洲一区二区三区四区乱码| 99在线精品在线精品| 夜夜操天天操天天操天天操| 亚洲精品成a人在线观看| 在线视频日韩欧美国产二区| 啊啊啊啊嗯嗯嗯嗯嗯视频| 日韩av网一区二区三区四区| 又爽又刺激的二人视频在线观看 | 国产精品18久久久久久vr深喉| 精品国产久久久久久人妻| 加勒比人妻秘书中文字幕一区二区| 国产欧美日韩精品一区二| 午夜欧美日韩精品一二| 中文字幕精选一区二区视频| 人人妻精品一区二区三区| 大香蕉久久久久久久久久久久| 一区二区三区中文字幕有码| 天天干夜夜操人人妻| 欧美熟综合久久久久久免费看| 大香蕉久久久久久久久久久久 | 性欧美丰满熟妇bbb| 亚洲成人国产精品久久久久| 国产三级黄片在线播放| 老鸭窝91久久精品色噜噜| 日本抠逼胖的美女抠逼鸡巴奶一| 国产熟女av一区二区三区| 国产一级黄色片免费看| 欧美日韩高清不卡一区二区三区| 国产精品久久久禁精品| 日韩精品免费视频无码专区| 国产日产欧美精品一区二区三区 | 伊人婷婷色香五月综合缴缴情| 色噜噜人妻丝袜av| 日韩综合中文字幕在线视频| 国产熟女一区二区三区熟妇视频 | 久久国产调教女奴视频| 欧美日韩国产高清大片| 精品一区二区亚洲av观看| 一一区二区三区美女性感| 秋霞在线一区二区三区四区| 国产精品美女自慰喷水| 亚洲欧美激情综合首页| 天天草天天日天天干天天插| 中文字幕一区二区三区jjzz| 国产又猛又黄又爽又粗| 老女人老熟妇欧美午夜三级理论| 日本一道久久久中文字幕综合| 婷婷激情五月天综合基地| 2021亚洲国产精品自拍| 一区二区三区免费观看的视频| 久久精品伊人波多野结衣| 欧美一区二区三区免费高| 人妻在线一区二区三区四区| 国产黄片一区二区在线| 日韩乱妇乱女熟妇熟女网站| 日韩黄片免费黄片在哪看| 亚洲最新网址一区二区| 欧美综合亚洲日韩精品区| 亚洲国产一区二区三区亚瑟| 美女在线播放一区二区三区| 日被一区视频在线观看| 国产精品久久久禁精品| 国产三级AV在线一区二区三区| 一区二区色色黄黄91| 色婷婷久久综合av婷婷| 日韩欧美精品96一区二区| 天天干夜夜操狠狠射| 区一区二区三区欧美| 欧美久久久久一区二区三区| 男人鸡巴放女人逼的视频和黄色| 国产激情在线免费观看| 日韩一区二区又粗又大| 中文在线三级中文字幕| 中文字幕日本精品三区| 精品乱码一区二区三区不卡视频| 国产一区二区自拍视频| 日本不卡一区二区三区在线观看 | 国产av麻豆办公室秘书| 国产福利一区在线观看蜜臀av| 中文字幕一区二区三区不卡不卡| 有意境的性爱古装捅插插| 在线免费观看尤物视频| 欧美一区二区三区中文字幕 | 制服丝袜在线中文字幕人妻| 亚洲天堂网av一区二区| 欧洲黑人黄毛片在线视频| 美女啊啊啊啊疼免费在线观看| 亚洲中文字幕免费观看| 麻豆一区二区99久久久久| 精品蜜桃一区二区三区91| 亚洲国产精品自产在线播放| 操巨棒舔你的骚逼另类最大| 国产在线一区二区导航| 亚洲欧美成人另类激情| 中文人妻熟妇乱精品成熟| 少妇人妻电影一区二区| 日韩av一区二区三区免费看| 午夜欧美日韩精品一二| 亚洲欧美一区二区三区情侣99| 精品少妇一二三区免费看| 欧美综合区自拍亚洲综合绿色| 北条麻妃在线一区二区三区熟女| 好爽 要高潮了 深点快视频| 又大又长又粗又硬又刺激的黄片| 性高湖久久久久久久久| 超碰在线免费公开97| 国产一区二区自拍视频| wwwwxxx久久| 日韩av一区二区三区免费看| 久久99精品一区二区蜜桃臀| 国产亚洲精品女人久久网| 91久久国产精品网站| 国产日韩欧美一区二区三区乱码 | 午夜精品久久久久久久爽| 日韩视频一区二区在线| 国产三区美女在线观看| 欧美激情综合亚洲婷婷| 亚洲中文字幕av无码专区| 亚洲精品视频人妻系列| 午夜精品一区二区在线观看| 啊啊啊水好多在线观看| 午夜精品一区二区在线观看| 国产精品久久久视频二区在线| 99这里有精品免费视频20| 精品国产你懂的在线观看| 亚洲一区二区婷婷香蕉丁香| 99999久久久久久亚洲| 国产尤物福利在线不卡| 国产精品久久久久久久泡妞| 亚洲人妻免费在线视频| 亚洲熟女精品不卡一区二区 | 一级日韩在线观看一级日韩在线| 日韩中出人妻素人专区| 国产精品免费观看一级黄| 久久一久久精品男人天堂av| 亚洲国产日韩欧美久久精品| av中文资源在线观看| 国产熟女乱免费一区二区| 免费观看禁片中文字幕| av在线免费观看不卡的| 中国人BBWBBW高潮| 成人动漫不卡一区二区三区| A级黄色视频无码不用下载免费看| 91啊啊啊啊啊嗯嗯嗯| 国产精品久久久视频二区在线| 欧美日韩一区二区不卡| 国产一区二区视频麻豆| 欧美一区—二区—三区| 欧美激情四射一区二区三区| 国产情爱视频免费观看| 神马午夜久久午夜久久午夜| 少妇色精品中文字幕| 2020年国产精品自线在拍| 亚洲第一无码av无码专区| janpen白嫩丰满人妻| 日韩久久久久久中文人妻| 亚洲色吊丝欧美色吊丝另类| 一区二区三区av蜜桃| 麻豆免费成人在线观看| 午夜精品久久久久久久爽| 玩弄了裸睡少妇人妻野战| 青草福利视频在线播放| 亚洲欧美一区二区图片在线 | 一区二区三区av蜜桃| 中文字幕在线观看嗯嗯| 亚洲人妻中文字幕色站| 国产又粗又长又硬又爽| 五月婷婷丁香中文字幕| 无码一区二区播放免费以及| 五月婷婷中文字幕一二三区| 国产三级在线观看不卡| 国产日本人妻一区二区| 午夜激情福利视频在线观看| 国产人妻无码一区二区三区| 国产精品原创在线观看看片网| 亚洲乱码日产精品一二三| 国产一区二区三区啪啪啪| 日韩特黄大片在线观看| 精品人妻久久久久久中文字幕 | 久久人人澡久久人妻之精品| 久久久人妻精品中文字幕| 中国人BBWBBW高潮| 国产成人精品久久综合| 欧洲黑人黄毛片在线视频| 国产成人综合欧美精品久久| 男人女人插肌巴视频软件| 日韩精品中文字幕视频在线播放| 亚洲欧美另类人妻校园| av中文字幕一二三区| 国产suv精品一区二av1| 五月婷婷丁香中文字幕| 久久人人澡久久人妻之精品| 九九九热精品免费视频观看| 最新中文字幕熟女诱惑| 欧美国产精品一区二区免费| 国产精品97久久久久久a| 成人国产亚洲欧美日韩| 欧美亚洲中文字幕第一页| 亚洲欧美日韩在线观看不卡 | 性欧美大战久久久久久久安居码| 黄片日韩欧美在线观看| 丰满熟女精品一区二区三区| 成人毛片18女人免费观看| 国产精品黑丝亚洲自拍导航| 久久久久九九九肉丝91| 男女亚洲视频在线观看| 性高湖久久久久久久久| 香蕉尹人综合在线观看| 日韩精品高清不卡一区二区三区| 欧美色图校园春色小说| 午夜影院免费观看在线| 亚洲精品啊啊啊啊啊啊视频| 久久久精品国产日韩欧美| 国产又猛又粗又长的视频| 逼久久久久久久久久久久| 亚洲欧美激情综合首页| 120分钟内射视频| 伊人成人成人综合网| 午夜aaa片一区二区专区| 成人动漫不卡一区二区三区| www国产精品久久久| 亚洲精品一线二线三线区别大吗| 美日韩成人一级免费黄色片| 国产精品女人久久久久久| 日韩精品中文字幕视频在线播放| 色综合久久超碰色婷婷| 国产熟女视频一区二区免费| 99最新精品视频在线观看| 日本高清神马电影一区二区三区| 帅哥美女做爱美国网站| 午夜诱惑免费视频福利| 久久久久久wwwwww| 欧洲亚洲精品中文字幕乱码| 日本成人午夜小视频 | 国产白嫩在线观看视频| 欧美经典日韩精品一区二区| 91人人添人人妻dvd| wwwwxxx久久| 99精品国产再热久久无毒不卡 | 国内激情一区二区三区| 国产激情在线免费观看| 少妇色精品中文字幕| 久久av秘一区二区三区| 国产中文乱码字幕无线观看| 国产精品人人爽人人做我可爱| 中文字幕人妻一区二区免费| 97麻豆国产传媒一区二区三区| 日本一二三区不卡高清区| 亚洲精品 国产一区| 国产亚洲一区二区网址| 精品久久亚洲一区二区av| 欧美日韩国产欧美日韩国产欧美日韩| 亚洲成人最大在线观看| 99热日卡精品偷拍区二区| 2021精品久久久久精品免费网| 亚洲精品成a人在线观看| 国产精品久久久久久久泡妞 | 欧美经典日韩精品一区二区| 国产美女一级做受在线观看 | 69精品久久久久中文字幕| 大屁股富婆推油高潮啪啪| 丰满人妻精品一区二区在线| 丁香六月五月婷婷综合| 嫩逼插入啊啊操逼视频免费观看| 日本中文字幕在线一区二区三区四区| 在线视频日韩欧美国产二区| 亚洲综合国产精品免费| 国产精品久久久久av免费| 精品国产成人一区二区不卡在线| 操巨棒舔你的骚逼另类最大| 欧美情欲片一区二区三区| 亚洲黄页一区二区在线观看免费 | 视频一区二区三区日韩欧美| 精品久久亚洲一区二区av| 日韩精品在线视频中文字幕| 99伊人亚洲综合在线| 91久久香蕉氩炫呖| 久久久久久wwwwww| 一区二区在线播放免费| 性欧美高清精品video| 九九九全国免费在线观看视频| 欧美日韩一区二区不卡| 国产精品久久久69麻豆一区| 伊人婷婷色香五月综合缴缴情| 99r精品视频在线观看| 成人aaa片一区国产精品| 日韩乱妇乱女熟妇熟女网站| 日韩在线视频精品一区二区三区| 国产suv精品一区二av1| 91啊啊啊啊啊嗯嗯嗯| 天堂无码亚洲AV日韩AV| 国产欧美日韩精品一区二| 日韩精品久久久久久免费视频| 在线观看欧美一区二区精品| 日本护士xxx久久久| 国产又长又粗又猛又爽又黄的视频 | 小桃酱精品一区二区三区在线| 偷拍日韩精品一区二区三区 | 日韩综合中文字幕在线视频| 亚洲欧美自拍区偷拍亚洲免费| 好爽好大好紧免费视频| 97人妻精品国产一区二| 免费欧美高清码二三区| 亚洲熟女人妻一区二区三区| 一区二区在线播放免费| 亚洲一级特黄大片在线播放| 精品一区二区三区视频在线| 久久久久久久久免费午夜电影| 丰满人妻熟妇乱又伦精品668 | 国产成人综合在线观看不卡| 国产男女无遮挡猛进猛出免费视频| 中文字幕人妻一区二区免费| 欧美精品一区二区在线看| 色综合久久中文综合久久激情| 亚洲欧美另类人妻校园| 五月婷婷激情视频四射| 中文字幕一区二区三区jjzz| 国产精品久久久久久福利漫| 色婷婷孕妇av一区二区三区| 98人妻人人做人碰人人爽| 精心挑选精品无码久久久| 国产精品久久久17| 国产精品久久精品日日| 亚洲精品国产国语对白| 2021亚洲国产精品自拍| 50黄色片开心五月深婷| 好看电影网亚洲一区| 农村家庭处女破处性爱使劲操| 成人国产精品久久久春色| 人妻熟女av在线播放| 2021精品久久久久精品免费网| 免费一区二区三区91| 成人午夜精品久久久久久久久| xxx国产精品视频xxx软件| 伊人久久大香蕉综合成人网| 中文字幕一区二区专区| av一区二区三区波多野| 国产成人综合精品日韩| 久久久精品国产麻豆| 国产亚洲精品女人久久网| 爱性久久久久久久三级电影| 欧美日韩一区二区不卡| 国产日韩亚洲欧美综合| 久99久热只有精品国产女同| 久久精品人妻中文字幕| 欧美国产一区二区三区在线| 久久青青草原精品国产| 日本人妻成人在线观看| 熟女高潮视频一区二区| 日韩三级hd久久精品| 青青草久久久久久久久久| 被邀请的人妻本庄优花| 青草草在线视频免费观看| 国产日韩亚洲欧美综合| 午夜日韩精品福利视频| 水岛津实媚薬av作品| 超碰在线免费公开97| 69pao国产精品视频| 91啊啊啊啊啊嗯嗯嗯| 国产又粗又长又爽又猛的视频| 欧美激情综合亚洲婷婷| 国产精品不卡一区二区曰本| 成人午夜精品久久久久久久久 | 少妇高潮片一区二区三区99| 寂寞人妻中出友田真希| 亚洲国产在线精品国自产拍 | 国产亚洲精品女人久久网| 日韩黄色片日韩黄色片| 99久久免费高清热精品| 国产精品亚洲综合网| 老熟女视频一区二区三区| 国产福利在线观看91精品| 日韩电影日韩影视欧洲大片| 男女亚洲视频在线观看| 久久精品熟女亚洲av电影| 美国大鸡巴操新西兰美女的B | 成年午夜精品久久久久久久| 亚洲欧美极品一区色婷婷| 啊啊啊小骚逼被操逼高潮了视频| 小美女玩逼逼视频 免费| 日韩一区二区又粗又大| 人妻少妇被猛烈进入中文字幕| 一级片a久久久久久久久久久| av无码不卡在线观看免费| 中文日韩不卡视频在线观看| 日本高清神马电影一区二区三区| 欧洲黑人黄毛片在线视频| 无码精品亚洲日韩AV美| 91丝袜一区在线观看 | 啊啊啊啊嗯嗯嗯嗯嗯视频| 伊人婷婷色香五月综合缴缴情| 日本一区二区高清免费| av在线免费观看不卡的| 日本 视频 一区二区| 日韩精品免费视频无码专区| 久久热/这里只有精品| 精品少妇人妻日韩欧美1区2区| 国产精品国三级国产专区| 精品爆乳少妇无码av无码专区| 久久一区二区三区网| 日韩中文字幕在线成人| 亚洲国产成人精品女人久久久久| 日韩一区二区不卡99| 中文字幕在线一区av| 欧美激情视频在线全球共享| 日本一道久久久中文字幕综合| 亚洲中文字幕一区女教师| 69pao国产精品视频| 蜜桃av噜噜一区二区三区视| 你懂的在线视频亚洲国产| 国产精品丝袜资源在线| 一区二区三区亚洲欧美日韩人色| 天天干夜夜操人人妻| 人偷人妻一区二区三区| 中文字幕人妻丝袜麻豆| 欧美日韩成人在线激情视频| 日本美女大胆看男生下身| 中文字幕亚洲欧美日韩精品一区| 九九国产精品入口麻豆| avtt亚洲av天堂资源网一区 | 日韩一区二区又粗又大| 国产欧美一区二区三区在线播放| 啊啊啊啊几把好大好硬视频| 综合久久网精品国产免费久久| 中文日韩不卡视频在线观看| 日日摸夜夜添夜夜添无码国产| 日韩黄色片日韩黄色片| 日皮av中文字母在线免费观看| 黄色av日产在线观看| 在线观看不卡一区二区| 国产午夜网色淫站av| 美女诱惑视频免费观看网站 | 美女脱个精光露出尿口视频| 一区二区三区中文字幕有码| 久久一区二区三区精品| 婷婷色综合成人成人网小说 | 日韩一区二区三区中文字幕视频 | 亚洲精品成a人在线观看拍拍拍 | 亚洲国产日韩综合天堂| 97超碰国产精品最新| 人妻熟女av在线播放| 亚洲视频一区二区欧美视频播放| 亚洲中文无码亚洲人vr在线| 中文字幕一区二区精品色大成| 红桃视频亚洲欧美日韩| 亚洲首页欧美在线观看| 亚洲精品一区二区中文| 日本一级黄片在线观看| 69精品国产福久久久久久| 有意境的性爱古装捅插插| 免费老年人一级毛片在线播放| 亚洲视频第一视频在线| 天天躁夜夜躁狠狠眼泪| 成年午夜精品久久久久久久| 尤物重口视频在线观看| 成人精品久久久麻豆中文字幕 | 欧美日本一区二区高清免费播放| 夜夜操天天操天天操天天操| 国产精品a国产精品a| 日韩黄色片日韩黄色片| 91精品国产91久久免费| 久久久久久久久免费午夜电影| 国产一区二区午夜在线| 国产欧美亚洲一区二区| 久久精品伊人波多野结衣| 3atv精品国产一区二区欧美| 伊人久久大香蕉综合成人网 | 在线观看欧美一区二区精品| 欧美国产日韩在线不卡| 亚洲一区二区偷拍女厕| 熟女一区二区三区视频免费观看| 在线观看国产三级片视频| 男女那个视频在线观看| 饥渴丰满少妇大力进入嗷嗷叫| 干骚货人妻视频在线播放| 一区二区三区亚洲av图| 怡红院一区二区熟女人妻| 50岁的老熟妇高潮强烈| 九九九全国免费在线观看视频| 日本女同性恋操逼小逼小逼逼| 欧美日韩有码中文字幕在线观看| 在线一区中文字幕无码| 日韩三级hd久久精品| 综合久久网精品国产免费久久| 日本美女丝袜诱惑一区二区三区| av在线免费观看不卡的| 久久精品熟女亚洲av麻豆粉芽| 亚洲五月六月丁香激情在线观看| 97免费精品国自产拍在线| 欧美日韩一区二区a∨视频| 日韩伦理片一区二区在线观看| 一级片在线观看中文字幕| 日韩一区二区三区四区| 手机福利大片大鸡巴一| 麻豆国产一区二区三区四区| 亚洲色图欧美自拍偷拍| 日本女同性恋操逼小逼小逼逼| 国产一区二区三区免费在线播放| 丝袜肉丝一区二区三区| 婷婷亚洲综合小说另类图片| 亚洲最新网址一区二区| 视频一区视频二区立足美利坚 | 久久国产调教女奴视频| 久久精品99国产亚洲av成人| 国产三级在线观看不卡| 欧美成人av男优大全| 日本人妻成人在线观看| 羞涩色进入亚洲一区二区av| 国产欧美日韩精品一区二| 久久久久久久久久久久久国产论坛| 日本欧美熟妇色视频在线| 日韩女同性恋精品一二三区| 日韩精品一区二区三区欲色av | 亚洲中文字幕综合一区| 色欲av无码一区二区三区| 欧美国产精品一区二区免费| 色欲av无码一区二区三区| 国产亚洲综合精品一区二区三区 | 国产69精品久久久久久妇| 亚洲欧美一区二区图片在线| 欧美激情综合亚洲婷婷| 這裏隻有国产强伦姧在线观看| 夜夜操天天操天天操天天操| 啊啊啊啊嗯嗯在线观看永久| 亚洲精品成a人在线观看| 美女高潮激情视频网站| 亚洲高清精品人妻自拍| 男女啊啊视频在线观看| 久久久久久久久久久久高潮| 日韩性生活黄色一级片| 欧美综合亚洲日韩精品区| 国产一级a毛一级a做免费视频| 人妻系列视频精品免费| 秋霞在线一区二区三区四区| 午夜福利视频免费一区二区三区| 极品人妻一区+二区+三区| 成人黄色一级片免费观看| 黑人巨大精品欧美一区二区桃| 成人免费在线播放视频在线观看| 一级日韩欧美一区二区在线| 欧美激情亚洲综合在线| 韩国激情一区二区三区日韩视频| 一区二区三区视频日本精品| 国产亚洲综合精品一区二区三区 | 男女精品视频在线网站| 久久五月份婷婷激情电影 | 欧美日本精品一区二区三区| 日韩视频一区二区在线| 干骚货人妻视频在线播放| 欧美黄色私人影院一区二区日韩| 国产精品视频第一区二区三区| 国产刺激男女视频在线| 在线一区中文字幕无码| 日韩中文字幕视频在线看中文| 91久久精品国产久久| 91啪国产福利在线| 精品爆乳少妇无码av无码专区| 国产日韩aaaaaaa毛片| 2021最新热播国产一区二区| 久久久精品日韩福利视频免费| 黄色片在线观看中文字幕| 国产偷抇久久一级精品a| 青青草国产精品视频在线| 男人把女人下面扒开插流了| 欧美日本韩国一区二区三区四区| 欧美激情视频三区在线| 日本一区二区三区欧美日韩| 中文字幕有码综合色亚洲| 国产精品国产精品国产专| 午夜国产一区二区在线观看| 欧美亚洲精品一区二区在线| 亚洲精品啊啊啊啊啊啊视频| 国产精品久久久禁精品| 蜜桃网站在线观看视频| 最新av网址一区二区| 久久久久高潮毛片全部播放| 啊啊湿湿涩涩艺术家游戏| 欧美高跟鞋一区二区视频| 女生裸体视频网站免费| 亚洲欧美日韩电影一区二区| 国产男女无遮挡猛进猛出免费视频| 中文字幕在线一区av| 久久久久久久久久久久久国产论坛| 亚洲欧美日韩国产精品二区| 91中文字幕精品久久久久人妻| 欧美午夜激情视频在线观看| 99人人爽人人妻人人澡| 杨思敏1一5集国语版在线播放| 男女视频网站免费在线| 最新av一区二区三区| 毛片嗯嗯啊啊啊大鸡吧视频| 国产精品乱码人人做人人爱| 亚洲欧洲日韩国产一区二区三区| 中日韩高清视频在线观看| 最近的中文字幕在线看视频| 日韩精品高清视频在线观看 | 欧美日韩成人在线激情视频| 久久一久久精品男人天堂av| 天天精品久久久久久久| 91在线无码精品秘 入口九色| 久久AV无码AV高潮AV喷吹| 日本一区二区三区av电影| 大屁股富婆推油高潮啪啪| 中文字幕免费在线看线人动作大片 | 香蕉尹人综合在线观看| 日韩av黄色在线网站| 3atv精品国产一区二区欧美| 日韩一区二区又粗又大| 国产精品电影一区二区三区| 亚洲av欧美av在浅| chinese丰满老熟妇hd| 久久久亚洲精品乱码一区| 国产的亚洲精品成人| 主播喷水视频网站91| 日韩18禁av一区二区| 久久精品亚洲精品五月天| 亚洲欧美日韩一级特黄在线| 欧美日韩午夜视频在线播放| 亚洲欧美中文字幕在线观看| 又粗又猛又爽又黄视频在线观看 | 99精品在线观看免费视频| 国产一区美女在线观看| 久久久亚洲精品乱码一区 | 爱性久久久久久久三级电影| 国产精品电影一区二区三区| 精品一区二区三区蜜桃在线| 日本色电影一区二区| 男人的天堂一级黄色片| 国产精品一级二级三级久久久| 99r精品视频在线观看| 午夜色婷婷一区二区三区| 免费欧美日韩黄色高清网站| 亚洲欧美国产日韩精品在线| 国产亚洲精品久久久97| 欧美乱子伦xxxx熟妇| 鸡巴操丝袜女老板视频在线| 国产偷人妻精品一区二区三区| 中文字幕丝袜人妻精品| 中文字幕有码综合色亚洲| 一区二区三区亚洲av图| 午夜福利精品久久久精品| 国产深夜福利视频在线看| 青青草久久久久久久久久| 日韩欧美国产精品1区二区| 久久精品99国产亚洲av成人| 熟妇人妻久久中文视频| 91麻豆亚洲国产成人久久精品| 69pao国产精品视频| 懂色av区二区三区av| 国产一区二区自拍视频| 国产69精品久久熟女| 亚洲av欧美av在浅| 在线观看免费无码a片视频| 欧美激情亚洲综合在线| 日本一区二区三区av电影| 毛片嗯嗯啊啊啊大鸡吧视频| 精品亚洲国产亚洲国产| 九九国产精品入口麻豆| 日韩极品精品视频观看在线| 久久久久久久久久久久久久久福利| 国产精品v韩国v欧美激情v| 国产美女狂喷水潮在线播放| 日韩欧美国产免费观看视频| 天天精品久久久久久久| 日本一区二区三区四区五区| 国产精品欧美大片在线观看| 欧美日韩亚洲综合精品| 国产亚洲精品女人久久网| 欧美一级视频在线观看欧美| 国产精品人人爽人人做我可爱 | 嗯嗯啊啊啊啊在线视频| 日本特黄国产一级在线播放| 给我搜个三级黄片子| 人妻熟女av在线播放| 久久久精彩免费精品视频免费看| 国产日韩欧美一区二区三区乱码| 91精品国产综合蜜臀| 午夜欧美日韩精品一二| 久久婷婷人人澡人人澡| 欧美日韩性生活视屏手机在线| 教官好硬好爽好多水在线视频| 精品人妻伦一二二区久久| 天天日天天操天天射综合网| 久亚洲一线产区二线产区在线| 情人妻在线一区二区三区| 日韩 欧美 国产一区二区| 亚洲综合久久一区二区| 天天干夜夜操人人妻| 婷婷视频在线观看免费网站| 国产一区二区三区性爱视频| avtt亚洲av天堂资源网一区| 国产精品黑丝亚洲自拍导航| 老女人老熟妇欧美午夜三级理论| 亚洲一区二区婷婷香蕉丁香| 好看的欧美熟妇在线| 一区二区三区鲁丝不卡| 精品久久久成人码免费动漫| 久久亚洲精品综合一区| 亚洲欧美日韩区一区二区三| 四十如虎的丰满熟妇啪啪| 国产午夜福利片在线观看| 波多野结衣一区二区三区高清av| 欧美综合区自拍亚洲综合绿色 | 午夜亚洲精品中文字幕| 亚洲中文字幕av无码专区| 国模雅琪和悠悠制服女同| 国产又粗又长又硬又爽| 精品国产亚洲av麻豆狂野| 91狠狠色噜噜狠狠狠7777| 97久久超碰碰免费人妻精品| 亚洲午夜精品久久久a| 中国人BBWBBW高潮| 大香蕉一区二区三区在线观看| 国产精品视频第一区二区三区 | 亚洲中文无码亚洲人vr在线| 精品区一区二区三区四区人妻 | 亚洲欧美成人另类激情| 亚洲线精品一区二区| 2023国产精品久久| 偷拍一区二区三区久久 | 蜜桃网站在线观看视频| 成年人在线黄色片片网| 中文字幕有码在线观看| 寂寞人妻中出友田真希| 999国内精品永久免费| 亚洲国产欧美精品日韩2021| 欧美日本韩国一区二区三区四区| 国产av麻豆办公室秘书| 精品三区四区在线观看| 色老板精品视频在线观看| 精品亚洲国产亚洲国产| 国产AV魔鬼身材美女相亲| 色婷婷孕妇av一区二区三区| 久久精品久久国产精品| 91精品久久久一区二区三区| 国产精品18久久久久久vr深喉| 欧美国产日韩亚洲综合| 婷婷色综合成人成人网小说| 国产一区大胸裸色视频网| 久久国产精品95久久久久久| 伊人婷婷色香五月综合缴缴情| 国产专区 一区二区 在线播放 | 久久草97超碰爱香蕉| 日韩欧美专区在线观看| 久久天天操很很操夜夜上| 五月婷婷开心色中文字幕| 嗯嗯啊啊啊啊在线视频| 91美女啊啊淫叫操逼自慰| 国产一区二区午夜在线| 久久免费公开久久视频| 99在线精品在线精品| 久久精品福利视频导航| 亚洲欧美一区二区三区情侣99| 精品国产区久久久久久av| 女人天堂一区二区三区| 91久久精品无码一区二区大| 一区二区毛片三级片在线观看| 国产精品久久久久久福利漫| 99久久成人精品国产网站| 四十如虎的丰满熟妇啪啪| 啊啊啊啊嗯嗯在线观看永久| 特级av一区二区三区| 一本色道久久av蜜桃臀| 美国大鸡巴操新西兰美女的B| 国产精品久久久久粉嫩| 亚洲精品成a人在线观看| 免费国产亚洲视频在线播放| 午夜精品一区二区在线观看|